实际问题与反比例函数教案设计

2022-10-16 00:25:42 精品范文 下载本文

第1篇:实际问题与反比例函数教案设计

实际问题与反比例函数教案设计

一、教学目标

1.利用反比例函数的知识分析、解决实际问题

2.渗透数形结合思想,提高学生用函数观点解决问题的能力

二、重点、难点

1.重点:利用反比例函数的知识分析、解决实际问题

2.难点:分析实际问题中的数量关系,正确写出函数解析式

3.难点的突破方法:

用函数观点解实际问题,一要搞清题目中的.基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。

三、例题的意图分析

教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。

教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。

补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题

第2篇:《实际问题与反比例函数》说课稿

《实际问题与反比例函数》说课稿

一、数学本质与教学目标定位

《实际问题与反比例函数(第三课时)》是新人教版八年级下册第十七章第二节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。体现反比例函数是解决实际问题有效的数学模型,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题“的过程。

本节课的教学目标分以下三个方面:

1、知识与技能目标:

(1)通过对“杠杆原理”等实际问题与反比例函数关系的探究,使学生能够从函数的观点来解决一些实际问题;

(2)通过对实际问题中变量之间关系的分析,建立函数模型,运用已学过的反比例函数知识加以解决,体会数学建模思想和学以致用的数学理念。

2、能力训练目标

分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步运用函数的图像、性质挖掘杠杆原理中蕴涵的道理。

3.情感、态度与价值观目标:

(1)利用函数探索古希腊科学家阿基米德发现的“杠杆定律”,使学生的求知欲望得到激发,再通过自己所学知识解决了身边的问题,大大提高了学生学习数学的兴趣。

(2)训练学生能把思考的结果用语言很好地表达出来,同时要让学生很好地交流和合作.

二、学习内容的基础以及其作用

在17.1学习了反比例函数的概念及函数的图像和性质基础上,《实际问题与反比例函数》这一节重点介绍反比例函数在现实生活中的`广泛性,以及如何应用反比例函数的知识解决现实生活中的实际问题。

本节课的探究的例题和练习题都是现实生活中的常见问题,反映了数学与实际的关系,即数学理论来源于实际又发过来服务实际,这样有助于提高学生把抽象的数学概念应用于实际问题的能力。在数学课上涉及了物理学力学的实际问题,运用到古希腊科学家阿基米德发现的“杠杆定理”,其本质体现的是力与力臂两个量的发比例关系,最后落实到运用数学来解决。通过学习,让学生进一步加深对反比例函数的运用和理解,更深层次体会建立反比例模型解决实际问题的思想,巩固和提高所学知识,鼓励学生将所学知识应用到生活中去。

第3篇:《实际问题与反比例函数》说课稿

一、数学本质与教学目标定位

《实际问题与反比例函数(第三课时)》是新人教版八年级下册第十七章第二节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。体现反比例函数是解决实际问题有效的数学模型,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题“的过程。

本节课的教学目标分以下三个方面:

1、知识与技能目标:

(1)通过对“杠杆原理”等实际问题与反比例函数关系的探究,使学生能够从函数的观点来解决一些实际问题;

(2)通过对实际问题中变量之间关系的分析,建立函数模型,运用已学过的反比例函数知识加以解决,体会数学建模思想和学以致用的数学理念。

2、能力训练目标

分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步运用函数的图像、性质挖掘杠杆原理中蕴涵的道理。

3.情感、态度与价值观目标:

(1)利用函数探索古希腊科学家阿基米德发现的“杠杆定律”,使学生的求知欲望得到激发,再通过自己所学知识解决了身边的问题,大大提高了学生学习数学的兴趣。

(2)训练学生能把思

未完,继续阅读 >

第4篇:实际问题与反比例函数教学设计

实际问题与反比例函数 目标认知 学习目标

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程.

2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.

重点

掌握从实际问题中建构反比例函数模型.

难点

从实际问题中寻找变量之间的关系.

知识要点梳理

知识点一:反比例函数的应用

在实际生活问题中,应用反比例函数知识解题,关键是建立函数模型.即列出符合题意的反比例函数解析式,然后根据反比例函数的性质求解.

知识点二:反比例函数在应用时的注意事项

1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转

化为数学问题.

2.针对一系列相关数据探究函数自变量与因变量近似满足的函数关系.

3.列出函数关系式后,要注意自变量的取值范围.

知识点三:综合性题目的类型

1.与物理学知识相结合:如杠杆问题、电功率问题等.2.与其他数学知识相结合:如反比例函数与一次函数的交点形成的直角三角形或矩形的面积.

规律方法指导

本节课研究了反比例函数的概念、图象和性质

未完,继续阅读 >

第5篇:实际问题与反比例函数(教学设计)

26.2 实际问题与反比例函数 第1课时 实际问题与反比例函数(1)

——面积问题与装卸货物问题

一、新课导入 1.课题导入

前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决问题中所起的作用.这节课我们进一步探讨如何利用反比例函数解决实际问题.2.学习目标

(1)掌握常见几何图形的面积(体积)公式.(2)能利用工作总量、工作效率和工作时间的关系列反比例函数解析式.(3)从实际问题中抽象出数学问题,建立函数模型,运用所学的数学知识解决实际问题.3.学习重、难点

重点:面积问题与装卸货物问题.难点:分析实际问题中的数量关系,正确写出函数解析式.二、分层学习

1.自学指导

(1)自学内容:教材P12例1.(2)自学时间:8分钟.(3)自学指导:抓住问题的本质和关键,寻求实际问题中某些变量之间的关系.(4)自学参考提纲:

①圆柱的体积=底面积×高,104教材P12例1中,圆柱的高即是d,故底面积S.d②P12例1的第(2)问实际是已知S=500,求d.③例1的第(3)问实际是已知d=15,求S

未完,继续阅读 >

第6篇:实际问题与反比例函数的说课稿

实际问题与反比例函数的说课稿

一、说教学设计意图

首先由学生尝试举出实际生活中某两个量出租反比例关系的例子,自然地引入利用所学的反比例函数来解决实际问题,在数学课上引用一个用“杠杆规律”的实际问题,一下子抓住学生的好奇心理。激发了他们的学习兴趣。利用了公元前3世纪古希腊科学家阿基米德发现的“杠杆定律”中力与力臂两个量的反比关系,将他们运用到用数学来解决问题,激发学生求知热情。也培养他们科学探索精神。

实际问题向数学问题他转化是解决问题的关键。教师有理有据地引学生通过反比例函数模型实现这一目的。让学生体会其中的转化思想,逐步掌握转化的方法。函数模型没有变,但两个量的角色发生变化,体会变与不变的思想。通过这种方法的学习,让学生学会归纳、总结所学的知识。使学生初步形成运用反比例函数解决实际问题的意识打好基础。

通过以学生身边熟悉的星海湖水利工程为实际问题创设练习题,让学生进一步加深对反比例函数的运用和理解,更深层次形成反比例函数模型来解决实际问题的意识,巩固和提高所学知识。给学生足够的时间和空间,为他们

未完,继续阅读 >

第7篇:《实际问题与反比例函数》参考教案

26.2 实际问题与反比例函数(1)

教学目标

一、知识与技能

1.能灵活列反比例函数表达式解决一些实际问题.

2.能综合利用几何、方程、反比例函数的知识解决一些实际问题.

二、过程与方法

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.

2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.

三、情感态度与价值观

1.积极参与交流,并积极发表意见.

2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.

教学重点

掌握从实际问题中建构反比例函数模型. 教学难点

从实际问题中寻找变量之间的关系.关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想.

教学过程

一、创设问题情境,引入新课 活动1 问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全,迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境.

(1)请你解释他们这样做的道理

未完,继续阅读 >

第8篇:实际问题与反比例函数巩固练习

【巩固练习】 一.选择题

1.(2015•河北)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()

A.B.CD.2.日常生活中有许多现象应用了反比例函数,下列现象符合反比例函数关系的有()①购买同一商品,买得越多,花得越多; ②百米赛跑时,用时越短,成绩越好; ③把浴盆放满水,水流越大,用时越短;

④从网上下载一个文件,网速越快,用时越少.A.1个 B.2个 C.3个 D.4个 3.汽车油箱中有油20升,汽车行驶过程中每小时耗油x升,其行驶时间y(小时)与x(升)之间的函数关系式为()

x20 C.y D.y20x

20x4.若r为圆柱底面的半径,h为圆柱的高.当圆柱的侧面积一定时,则h与r之间函数关A.y20x B.y系的图象大致是().()

5.如果变阻器两端电压不变,那么通过变阻器的电流y与电阻x的函数关系图象大致是

6.下列各问题中,两个变量之间的关系不是反比例函数的是()

A:小明完成100m赛跑时,时间t(

未完,继续阅读 >

《实际问题与反比例函数教案设计.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
实际问题与反比例函数教案设计
点击下载文档
相关专题
[精品范文]相关推荐
[精品范文]热门文章
下载全文