追及问题应用题及答案
第1篇:追及问题应用题及答案
追及问题应用题及答案
追及问题绕来绕去,很容易让人觉得头晕。今天小编为大家准备的内容是追及问题应用题及答案,帮助大家学好这个知识点。
追及问题应用题及答案1
1、 甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?
18÷(14-5)=2(小时)
2、哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?
(50×10)÷(70-50)=25(分钟)
3、 小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16
千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?
(16-5)×2=22(千米)
4、 一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。在甲乙两地的中点处火车追上汽车,甲乙两地相距多少千米?
40×5÷(90-40)=4(小时)……追及时间
40×(5+4)=360(千米)……汽车速度×汽车时间=汽车路程
360×2=720(千米)……全程
5、 一列慢车在早晨6:30以每小时40千米的速度由甲城开往乙城,另一列快车在早晨7:30以每小时56千米的速度也由甲城开往乙城。铁路部门规定,向相同方向的两列火车之间的距离不能小于8千米。那么,这列慢车最迟应该在什么时候停车让快车超过?
追及路程:(7:30-6:30)×40=40(千米) 40-8=32(千米)
32÷(56-40)=2(小时)……追及时间
7:30+2小时=9点30分
6、 小云以每分钟40米的速度从家去商店买东西,5分钟后,小英去追小云,结果在离家600米的地方追上小云,小英的速度是多少?
40×5=200(米)……实际追及路程
每5分钟行200米,600-200=400(米),小云又走了10分钟,其实这10分钟就是追及时间。200÷10=20(速度差)40+20=60(米)……小英的速度
7、 一队中学生到某地进行军事训练,他们以每小时5千米的'速度前进,走了6小时后,学校派秦老师骑自行车以每小时15千米的速度追赶学生队伍,传达学校通知。秦老师几小时可追上队伍?追上时队伍已经行了多少路?
5×6=30(千米)……秦老师出发时队伍已经行的路程,也就是追及路程。
30÷(15-5)=3(小时)……追及时间
5×(6+3)=45(千米)……队伍总走的路程
8、 小明步行上学,每分钟行70米,离家12分钟后,爸爸发现小明的文具盒忘记在家里,立即骑自行车以每分钟280米的速度去 小明,那么爸爸出发后几分钟追上小明?
实际追及距离是 70×12=840(米)
840÷(280-70)=4(分钟)
9、 一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间,小强第一次追上小星?
400÷(300-250)=8(分钟)
10、在一条长300米的环形跑道上,甲乙两人同时从一起点出发,同向而跑,甲每秒跑9米,乙每秒跑7米,现在乙在甲后面100米,问:甲追上乙要多少时间?
(300-100)÷(9-7)=100(秒)
追及问题应用题及答案2
1、 小王、小李同住一楼中,两人从家去上班,小王先走20分钟后小李才出发。已知小李的速度是小王速度的3倍,则小李出发后多少时间能追上小王?
2、 甲每分钟行80米,乙每分钟行50米,在下午1:30分时,两人在同地背向而行了6分钟,甲又调转方向追乙,则甲在几点的时候追上乙?
3、某学校组织学生去长城春游,租用了一辆大客车,从学校到长城相距150千米。大客车和学校的一辆小汽车同时从学校出发,当小汽车到长城时,大客车还有30千米。已知大客车每小时行60千米,则小汽车比大客车快多少千米?
4、甲乙两人从周长为800米的正方形水池相对的两个顶点同时出发逆时针行走,乙在前,甲在后。甲每分钟走50米,乙每分钟走46米,出发多长时间甲和乙在同一点上?
5、甲、乙两人同时从东村出发到西村,甲的速度是每小时6千米,乙的速度是每小时4千米,甲中途有事休息了2小时,结果比乙迟到了1个小时,求两村相隔的距离?
6、龟兔赛跑,同时出发,全程7000米。龟以每分钟30米的速度爬行,兔每分钟跑330米,兔跑了10分钟后停下来睡觉了200分钟,醒来后立即以原速往前跑,当兔追上龟时,离中点是多少米?
7、学校组织四年级学生春游,包了两辆大面包车从学校出发。第一辆车速每小时30千米,上午7:00出发,第二辆晚开1小时,速度是每小时40千米。结果两辆车同时到达,问春游的景区离学校多远?
8、甲、乙两人同时从A地去B地,甲每分钟行250米,乙每分钟行90米,甲到达B地后立即返回A地,在离B地1200米处与乙相遇,A、B两地相距多少千米?
追及问题应用题及答案3
问题: 兄弟两人由家向学校出发,弟弟步行每分钟走50米,哥哥骑自行车每分钟行200米,弟弟走了15分钟后,哥哥骑车离家几分钟后能追上弟弟
解析: 这是一道简单的追及问题,基本关系式为:追及距离=速度差x追及时间。由题意,弟弟前12分钟走的路程就是追及过程中两人的距离,即50×12=600(米),速度差为200-50=150(米/分),所以追及时间为:600÷150=4(分钟)
答案: 50×12÷(200-50)=4(分钟)
第2篇:追及应用题及答案
追及应用题及答案
【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。
【数量关系】
1.追及时间=追及路程÷(快速-慢速)
2.追及路程=(快速-慢速)×追及时间
【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
追及应用题:
例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
解:(1)劣马先走12天能走多少千米? 75×12=900(千米)
(2)好马几天追上劣马? 900÷(120-75)=20(天)
列成综合算式 75×12÷(120-75)=900÷45=20(天)
答:好马20天能追上劣马。
例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
解:小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是
(500-200)÷[40×(500÷200)]
=300÷100=3(米)
答:小亮的速度是每秒3米。
例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
解:敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-16)]千米,甲乙两地相距60千米。由此推知
追及时间=[10×(22-16)+60]÷(30-10)
=120÷20
=6(小时)
答:解放军在6小时后可以追上敌人。
例4 :一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
解:这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,
这个时间为 16×2÷(48-40)=4(小时)
所以两站间的距离为 (48+40)×4=352(千米)
列成综合算式 (48+40)×[16×2÷(48-40)]
=88×4
=352(千米)
答:甲乙两站的距离是352千米。
例5:兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?
解 要求距离,速度已知,所以关键是求出相遇时间。从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,
那么,二人从家出走到相遇所用时间为
180×2÷(90-60)=12(分钟)
家离学校的.距离为 90×12-180=900(米)
答:家离学校有900米远。
例6 :孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。
解:手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。
所以
步行1千米所用时间为 1÷[9-(10-5)]
=0.25(小时)
=15(分钟)
跑步1千米所用时间为 15-[9-(10-5)]=11(分钟)
跑步速度为每小时 1÷11/60=5.5(千米)
答:孙亮跑步速度为每小时 5.5千米。
小知识:
解应用题时要找出题中数量间的对应关系。如解平均数应用题需找出“总数量”所对应的“总份数”;解倍数应用题需找出具体数量和倍数的对应关系;解分数应用题需找出数量与分率的对应关系。因此,找出题中“对应”的数量关系,是解答应用题的基本方法之一。
用对应的观点,发现应用题数量之间的对应关系,通过对应数量求未知数的解题方法,称为对应法。
解答复杂的分数应用题,关键就在于找出具体数量与分率的对应关系。
第3篇:应用题行程问题(相遇,追及问题)
列方程解应用题之
行程问题
教学目的1.知识与能力: 使学生会分析不同类型的相遇及追及问题中的相等关系,列出一元一次方程解简单的应用题。
2.过程与方法: 使学生加强了解列一元一次方程解应用题的方法步骤。
3.情感态度与价值观: 通过小组合作,加强同学们之间的交流以及团结互助的精神。
教学重点
利用路程、速度、时间的关系,根据相遇及追及问题中的等量关系,列出一元一次方程。
教学难点
寻找相遇及追及问题中的等量关系。教学过程
一、导入
想一想回答下面的问题:
1、A、B两车分别从相距S千米的甲、乙两地同时出发,相向而行,两车会相遇吗?
2、如果两车相遇,则相遇时两车所走的路程与甲、乙两地的距离有什么关系?
3、如果两车同向而行,B车先出发a小时,在什么情况下两车能相遇?为什么?
4、如果A车能追上B车,你能画出线段图吗?
二、例题1
A、B两车分别停靠在相距240千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米。若两车同时相向而行,请问B车行了多长时间后与A车相遇?
三、练习1(1)挖一条长2200m 的水渠,由
第4篇:中点问题应用题及答案
中点问题应用题及答案
【题目1】有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟可以追上乙?
【解答】乙丙的速度比是(10+40):40=5:4,甲丙的速度比是(20+60):60=4:3。所以甲乙的速度比是4/3:5/4=16:15,甲比乙晚出发10分钟,可以得出甲用了15×10=150分钟追上乙。
【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的'时速是60千米,在DA上的时速是80千米。已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。求AN占AB的几分之几?
【解答】设每边720千米,AB、BC、CD和DA分别需要8,6,12,9小时,D→P需要(12-9+6)÷2=4.5小时,P→D→A需要13.5小时,这时相距8+6-13.5=0.5
第5篇:商品问题应用题及答案
商品问题应用题及答案
随着市场经济的不断发展,商品交易成为人们日常生活中最为常见的一种社会现象,反应在数学上,商品销售问题也成为了类非常重要的问题.下面是小编为你整理的关于商品问题的应用题,请你欣赏!
1、某服装店因搬迁,店内商品八折销售。苗苗买了一件衣服用去52元,已知衣服原来按期望盈利30%定价,那么该店是亏本还是盈利?亏(盈)率是多少?
2、成本0.25元的作业本1200册,按期望获得40%的利润定价出售,当销售出80%后,剩下的作业本打折扣,结果获得的利润是预定的86%。问剩下的作业本出售时按定价打了多少折扣?
3、某种商品,甲店的进货价比乙店的进货价便宜10%,甲店按30%的利润定价,乙店按20%的利润定价,结果乙店的定价比甲店的定价贵6元,求乙店的定价。
参考答案:
1、解:要知亏还是盈,得知实际售价52元比成本少多少或多多少元,进而需知成本。
因为52元是原价的.80%,所以原价为(52÷80%)元;
又因为原价是按期望盈利30%定的,
所以成本为 52÷80%÷(1+30%)=50(元)
可以
第6篇:路程问题应用题及答案
路程问题应用题及答案
现在大家对应用题的题型应该有了不少的了解,这一期再发一题型,考试的题型也就差不多全了。以下是小编整理的路程问题应用题及答案,欢迎阅读!
路程问题应用题及答案1
1.A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时。丙车与甲、乙两车距离相等时是几点几分?
解析:
丙车与甲、乙两车距离相等时必在它们正中间,而这点正是甲、乙两车平均走过的路程。
可以考虑用平均速度来算。(60+54)÷2=57甲、乙两车平均速度57千米/小时
(207-57×0.5)÷(57+48)=1.78:30后1.7小时(102分钟)是10:12
丙车与甲乙两车距离相等,说明丙车行到了两车的中点上。我们假设丁,也和甲乙两人同时从A地出发到B地,以(60+54)÷2=57千米/小时的速度行驶,丁车就一直在甲乙两车的中点上。丙车和丁车相遇时,丙车就与甲乙两车距离相等了。丁车先行了57×30/60=28.5千米,
