凯莱定理证明_皮克定理证明
凯莱定理证明由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“皮克定理证明”。
Theorem1.Let n be a positive integer, and let G = be a cyclic group of order n.Then G≌(Zn;+).Consequently, any two cyclic groups oforder n are isomorphic to each other.Theorem2.Let G = be an innite cyclic group.Then G≌(Zn;+).Consequently, any two innite cyclic groups are isomorphic to each other.Theorem3(Caycley's Theorem).If G is a group,then G is isomorphic to a subgroup of SX, thesymmetric group on a set X(it is called a transformation group(交换群)of X).In particular,if G is fnite, then G is isomorphic to a subgroup of Sn(it is called a permutation group(置换群)).定理6.2(Cayley定理)任何一个群都与某个变换群同构.证明设G是群.对于每一个aG,定义G的变换σa如下:σa(x)ax,xG.显而易见,σa是G的一一变换.令G'{σa|aG}.下面我们来阐明G'是G上的一个变换群.事实上,显然,我们有IGσeG'.此外,对于任意的σa,σbG',我们有(σaσb)(x)abxσab(x),(σaσa1)(x)aa1xxIG(x),(σa1σa)(x)a1axxIG(x),xG,从而,σaσbσabG',σaσa1σa1σaIG.所以G'是G上的一个变换群.现在考察由下式定义的G到G'的映射f:f(a)σa,aG.显而易见,f是满射.对于任意的a,bG,我们有f(a)f(b)σaσbσa(e)σb(e)ab.因此f是单射,从而,f是双射.此外,我们有f(ab)σabσaσbf(a)f(b),a,bG.所以f是G到G'的同构,从而,GG'.Pf:AumeG is a group.For everyaG,we have
σa(x)ax,xG.It is obvious thatσais a transformation of G.LetG'{σa|aG}.obviously,we have IGσeG'.Otherwise,for everyσa,σbG',we have
(σaσb)(x)abxσab(x),(σaσa1)(x)aa1xxIG(x),(σa1σa)(x)a1axxIG(x),xG,thus,σaσbσabG',σaσa1σa1σaIG.Therefor G'is a transformation group ofG.Now inspect thef by type definition G toG' :f(a)σa,aG.Obviously,f is a surjection.For alla,bG,we have
f(a)f(b)σaσbσa(e)σb(e)ab.Therefore f is injection,Thus,fis a bijection.Moreover,we have
f(ab)σabσaσbf(a)f(b),a,bG.So fis isomorphic fromGtoG',thus,GG'.
一.基本定理: 1.(极限或连续)局部保号性定理(进而证明保序性定理) 2.局部有界性定理. 3.拉格朗日中值定理.4.可微的一元函数取得极值的必要条件. 5.可积函数的变上限积分函数的连续性. 6.牛......
刀豆文库小编为你整合推荐4篇定理与证明,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
正弦定理证明1.三角形的正弦定理证明: 步骤1.在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到a/sinA=b/sinB 同理,在△ABC中, b/s......
新课标必修数学5“解三角形”内容分析及教学建议江苏省锡山高级中学杨志文新课程必修数学5的内容主要包括解三角形、数列、不等式。这些内容都是高中数学中的传统内容。其中......
几何证明定理一.直线与平面平行的(判定)1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.2.应用:反证法(证明直线不平行于平面)二.平面与......
