角平分线定理的多种证明方法_角平分线定理怎么证明

2020-02-28 证明 下载本文

角平分线定理的多种证明方法由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“角平分线定理怎么证明”。

三角形内角平分线定理的多种证明方法

已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC

证明:方法一:(面积法)

三角形ABM面积S=(1/2)*AB*AM*sin∠BAM, 三角形ACM面积S=(1/2)*AC*AM*sin∠CAM, 所以三角形ABM面积S:三角形ACM面积S=AB:AC 又三角形ABM和三角形ACM是等高三角形,面积的比等于底的比,即三角形ABM面积S:三角形ACM面积S=BM:CM 所以AB/AC=MB/MC 方法二(相似形)

过C作CN平行于AB交AM的延长线于N 三角形ABM相似三角形NCM, AB/NC=BM/CM, 又可证明∠CAN=∠ANC 所以AC=CN,所以AB/AC=MB/MC 方法三(相似形)

过M作MN平行于AB交AC于N 三角形ABC相似三角形NMC, AB/AC=MN/NC,AN/NC=BM/MC 又可证明∠CAM=∠AMN 所以AN=MN,所以AB/AC=AN/NC所以AB/AC=MB/MC

方法四(正弦定理)

作三角形的外接圆,AM交圆于D,由正弦定理,得,AB/sin∠BMA=BM/sin∠BAM, AC/sin∠CMA=CM/sin∠CAM 又∠BAM=∠CAM,∠BMA+∠AMC=180 sin∠BAM=sin∠CAM,sin∠BMA=sin∠AMC, 所以AB/AC=MB/MC

阅读下面材料,按要求完成后面作业。

三角形内角平分线性质定理:三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。

已知:△ABC中,AD是角平分线(如图1),求证:=。

分析:要证=,一般只要证BD、DC与AB、AC或BD、AB与DC、AC所在的三角形相似,现在B、D、C在一条直线,△ABD与△ADC不相似,需要考虑用别的方法换比。

在比例式=中,AC恰好是BD、DC、AB的第四比例项,所以考虑过C作CE∥AD交BA的延长线于E,从而得到BD、DC、AB的第四比例项AE,这样,证明(1)完成证明过程: 证明:

=,就可转化证=。

(2)上述证明过程中,用到了哪些定理(写对两个即可)答:用了:①____________;②_____________。

(3)在上述分析和你的证明过程中,主要用到了下列三种数学思想的哪一种:①数形结合思想 ②转化思想 ③分类讨论思想 答:____________。(4)用三角形内角平分线定理解答问题:

如图2,△ABC中,AD是角平分线,AB=5cm,AC=4cm,BD=7cm,求BC之长。

(1)证明:过点C作CE//AD交BA的延长线于点E,则∠E=∠BAD=∠DAC=∠ECA,所以AE=AC,由CE//AD,可得=,∴=。

(2)两直线平行,同位角相等;等腰三角形的判定;三角形相似的判定的定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。(3)②;(4)“略”

角平分线性质定理的证明方法

角平分线性质定理的证明方法......

角平分线性质定理的证明方法

角平分线的定义从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。扩展资料角平分线的性质1、角平分线分得的两个角相等,都等于该角的......

三角形角平分线定理

刀豆文库小编为你整合推荐3篇三角形角平分线定理,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

三角形角平分线定理

定理:三角形任意两边之比等于它们夹角的平分线分对边之比。三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。扩展资料角平分线定理:从一个角的顶点引出......

角平分线的性质定理教案

角平分线的性质定理教案慧光中学:王晓艳教学目标:(1)掌握角平分线的性质定理;(2)能够运用性质定理证明两条线段相等;教学重点:角平分线的性质定理及它的应用。 教学难点:角平分线定理......

《角平分线定理的多种证明方法.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
角平分线定理的多种证明方法
点击下载文档
相关专题 角平分线定理怎么证明 证明 定理 多种 角平分线定理怎么证明 证明 定理 多种
[证明]相关推荐
[证明]热门文章
下载全文