函数值域问题_函数值域的方法

2020-02-28 其他范文 下载本文

函数值域问题由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“函数值域的方法”。

努力今天成就明

知识就是财富

求分式函数值域的几种方法

求分式函数值域的常见方法 1 用配方法求分式函数的值域

如果分式函数变形后可以转化为y配方,用直接法求得函数的值域.例1 求y解:y1的值域.22x3x11312x482ab的形式则我们可以将它的分母2a1xb2xc22,311因为2x≥,488所以函数的值域为:,8∪0,.x2x例2 求函数y2的值域.xx1解:y211,2xx12133因为xx1x≥,244所以31≤20,4xx12 1故函数的值域为,1.3先配方后再用直接法求值域的时候,要注意自变量的取值范围.取“”的条件.利用判别式法求分式函数的值域

我们知道若ax2bxc0a0,a,bR有实根,则b24ac≥0常常利用这一结论来求分式函数的值域.x23x4例1 求y2的值域.x3x4解:将函数变形为y1x23y3x4y40①,当y1时①式是一个关于x的一元二次方程.因为x可以是任意实数,所以≥0,即3y34y14y47y50y7≥0,解得,17≤y≤1或1y≤7,又当y1时,x0,1故函数的值域为,7.72x2bxc例2 函数y的值域为1,3,求b,c的值.2x1解:化为y2xbxyc0,⑴当y2时xRb4y2yc≥0,4y24c2y8cb2≥0,由已知4y24c2y8cb20的两根为1,3,由韦达定理得,c2,b2.⑵当y2时x2c0有解 b综上⑴和⑵,b2,c2.由这两个例题我们知道在利用判别式法求分式函数的值域时要注意下列问题:

1、函数定义域为R(即分母恒不为0)时用判别式求出的值域是完备的.2、当x不能取某些实数时(分母为零),若要用判别式法求它的值域则需要对使ya2x2b2xc2a1x2b1xc1的判别式0的y值进行检验.3、转换后的一元二次方程若二次项系数中含有字母则需要讨论其是否为0只有在其不为0的情况下才可以使用判别式法.3.利用函数单调性求分式函数的值

对于求函数的值域问题,我们通常使用能够揭示此类函数本质特征的通性通法即利用函数的单调性来求其值域.例1求函数y解:y2x1(xR,x1)的值域.x12x12(x1)33,2x1x1x13是x减函数进而y是x的增函数,于是y,2; x1当x1时,当x1时,同样y是x的增函数,于是y2,; 所以y2x1(x1)的值域为,2∪2,.x1a的单调性的结论: x在求分式函数时我们常运用函数yx⑴当a0时在,a和a,上增函数,在a,0和0,a上是减函数.⑵当a0时在,0和0,上是增函数.例求函数yx(1≤x≤3)的值域.2xx4解:x0所以yx.4x1x4令tx在1,2上是减函数,在2,3是上增函数,x所以x2时,tmin4;

x1时,tmax5;

所以t4,5,t13,t,11故值域为,.434.利用反函数法(反解)求分式函数的值域

设yf(x)有反函数,则函数yf(x)的定义域是它反函数的值域,函数yf(x)的值域是其反函数的定义域.那么如果一个分式函数的反函数存在,我们就可以通过求反函数的定义域来求其值域.例1 求函数y2x的值域.5x12x1(x)的映射是一一映射因此反函数存在,其反函数为5x152,5解:由于函数yyx 明显知道该函数的定义域为x|x25x22故函数的值域为,∪,.55说明:由于本方法中所具有的某些局限性,一般说来,用此方法求值域只用yaxb(c≠0)的函数,并且用此方法求函数的值域,也不是比较理想的方法.我们用这种cxd方法目的是找关于y的不等式所以反函数求值域的实质是反函数的思想树立这种思想是我们的宗旨.下面这种方法就是利用了反函数的思想比较通用的方法.5.利用方程法求分式函数的值域

4x27x0,1求函数例1(2005年全国高考理科卷Ⅲ第22题)已知函数f(x)2xf(x)的值域

4x27解:f(x),x0,1,2x所以2yxy4x27,x0,1,即4x2yx(72y)0,x0,1.这样函数的值域即为关于x的方程4x2yx(72y)0在x0,1内有解的y的取值集.令g(x)4x2yx(72y),x0,1,则关于x的方程4x2yx(72y)0在x0,1内有解g(0)g(1)≤0g(0)0g(1)077或≤y≤3或4≤y≤4≤y≤3,by2202a241b4acy4(72y)0即所求函数的值域为4,3..利用换元法求分式函数的值域

当题目的条件与结论看不出直接的联系(甚至相去甚远)时,为了沟通已知与未知的联系,我们常常引进一个(或几个)新的量来代替原来的量,实行这种“变量代换”往往可以暴露已知与未知之间被表面形式掩盖着的实质,发现解题方向.换元法是一种重要的数学解题方法,掌握它的关键在于通过观察、联想,发现与构造出变换式(或新元换旧式、或新式换旧元、或新式换旧式).在中学数学问题中,常见的基本换元形式有式代换、三角代换、点代换、参数代换等.x24x4,x[1,0]的值域. 例1 求函数f(x)2x4x5解:令tx2,t2则y2t111,[,1]. 1t212t115因为12[,2],t414所以函数f(x)的值域是[,].

25x4例2 求函数y的值域.

(1x2)3解:令xtan,(,),22tan4tan4则ysin4cos2 233(1tan)sec1sin2sin22cos221sin2sin22cos24≤.23276

3当且仅当tan22时“”成立.x44所以函数y的值域为0,.(1x2)327在这道例题中不仅用了换元法还用了均值不等式.利用三角函数来代换是我们在用换元法解题最常用的在换元后根据三角函数的有界性求能求出函数的值域.在用换元法的时候重要的就是要注意换元后的自变量发生了改变,那么它的定义域也就变了.注意到这点才能准确地求出值域.7.利用不等式法求分式函数的值域

“不等式法”就是通过利用不等式的一些性质和均值不等式来求某些具有一定特性的分式函数的值域.若原函数通过变形后的分子分母符和下列条件①各变数为正;②各变数的和或积为常数.则可以考虑用均值不等式求它的值域.要注意在得到结论之后要说明其中等号能够取到.例1 求函数y解:y24(x1)(x1)的值域.(x3)224(x1)24.24(x1)4(x1)4(x1)4x14因为x10,所以x1≥4,x14则x148,x124所以0y≤3(当x1时取等号),8故函数的值域为0,3.例2 设Sn123n,nN求f(n)中数学联赛)

解:f(n)Sn(n32)Sn1Sn的最大值.(2000年全国高

(n32)Sn1n(n1)nn22,(n1)(n2)(n32)(n2)n34n64(n32)27 即化为了求分式函数最值的问题f(n)164n34n.又因为n34当n64643450,≥2nnn641即n8时“”成立,所以对任何nN有f(n)≤,n501故f(n)的最大值为.50例2表面上看是数列的问题而实际是我们可以将其转化为求函数值域的问题在这里我们利用均值不等式的性质来求其值域就使得整个解题过程利用数更简单.8.斜率法求分式函数的值域

数形结合是中学数学中的一种重要的数学思想方法.数是形的抽象概括,形是数的直观表现.华罗庚先生指出:数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休.这种方法不仅仅体现在数学的其它领域中,在求函数的值域与最值时也有良好的反映.联想到过A(x1,y1),B(x2,y2)的直线LAB的斜率为kAB函数化为斜率式并利用数形结合法来求函数的值域.3t22(t)的最小值.例1 求函数f(t)2(3t2)3y2y1,我们可以考虑把分式x2x13t202解:函数f(t)可变形为f(t)(t),6t43设A(6t,3t2),B(4,0)则f(t)看作是直线AB的斜率,令x6t,y3t2则x212y(x4).在直角坐标系中A点的轨迹为抛物线的一部分直线与抛物线相切是斜率最小.过点B(4,0)直线方程为:yk(x4)将它代入x212y,有x212kx48k0,则0推算出k即t8时,f(t)min4.34此时x8,38 x2x11例2 求y(≤x≤1)的值域.x12(x2x)1解:y,令A(1,1),B(x,x2x),x(1)则ykAB,点B的轨迹方程为yx2x(1≤x≤1),21151B1(,),B2(1,2),kAB1,kAB2,2422所以yk51AB2,2,即函数的值域为512,2.

分式函数值域解法

分式函数值域解法汇编甘肃省定西工贸中专文峰分校 张占荣函数既是中学数学各骨干知识的交汇点,是数学思想,数学方法应用的载体,是初等数学与高等数学的衔接点,还是中学数学联系......

求函数值域的方法

求函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;②逆求法(反求法):通过反解x,用y 来表示 ,再由 x的取值范围,通过解不等式,得出 y的取值范围;④换元法:通过变量代换......

高一数学函数值域解题技巧

一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根......

求函数的值域的常见方法

求函数的值域的常见方法王远征深圳市蛇口学校求函数的值域是高中数学的重点学习内容,其方法灵活多样,针对不同的问题情景,要求解题者,选择合适的方法,切忌思维刻板。本文就已知解......

二次分式函数值域的求法

二次甘肃王新宏一定义域为R的二次分式函数用“判别式”法解题步骤:1把函数转化为关于x的二次方程2 方程有实根,△≥03 求的函数值域2x2x21:求y =2的值域 xx2解:∵x+x+2>0恒成立......

《函数值域问题.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
函数值域问题
点击下载文档
相关专题 函数值域的方法 值域 函数 函数值域的方法 值域 函数
[其他范文]相关推荐
[其他范文]热门文章
下载全文