现代数学思想在中学数学教学中的应用(定稿)_中学数学教学应用

2020-02-29 其他范文 下载本文

现代数学思想在中学数学教学中的应用(定稿)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“中学数学教学应用”。

现代数学思想在中学数学教学中的应用

重视数学思想方法的教学在我国、在国际上都已成为数学教育改革的一种潮流。这使我们认识到重视数学思想方法的教学对学生的数学素养的培养起着十分重要的作用。中学数学的现代化就是数学思想方法、教学观念和教学手段的现代化,这是具有时代意义的。搞好数学思想方法的教学是时代赋予我们的使命,也是优化学生数学思维品质、大面积提高中学数学教学质量的根本保证。

一、数学思想的含义及其重要性

“数学思想是对数学知识的本质的认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想。”关于数学思想和数学方法的关系,教授张奠宙与过伯祥在《数学方法论稿》中指出:“同一数学成就,当它去解决别的问题时,就称之为方法;当评价它在数学体系中的自身价值和意义时,称之为思想”。如“函数”,当我们用它解决具体的数学问题或实际问题时,称之为“函数方法”,当我们讨论它在数学中的价值时,它反映了两个变化量之间的对应关系,称之为函数思想,其实,数学思想与数学方法往往不加以区别,于是就有了“函数的思想方法”、“数形结合的思想方法”等说法。数学思想方法是处理数学问题的指导思想和基本策略,是数学的精髓,是数学的灵魂,引导学生理解和掌握以数学知识为载体的数学方法,是使学生提高思维水平,真正懂得数学的价值,建立科学的数学观念。从而发展数学,运用数学的重要保证也是现代数学思想与传统数学思想的根本区别之一,可以说数学的发现、发明主要是方法上的创新。典型的例子就是伽利略开创了置换群的研究,用群论方法确立了代数方程的可解性理论,彻底解决了一般性是代数方程根式解的难题。另外解析几何的创立解决了形、数沟通和数形结合及其相互转化的问题等等。我们从中可体会有了方法才是获得了“钥匙”,数学的发展绝不仅仅是材料、事实、知识的积累和增加。而必须有新的思想方法参与,才会有创新,才会有发现和发明,因此,从宏观意义上来说,在我们的数学和数学学习中,要再现数学的发现过程,揭示数学思维活动的一般规律和方法,只有从知识和思维方法两个层面上去教与学,使学生从整体上,从内部规律上掌握系统化的知识,以及蕴含于知识以知识为载体的思想方法,才能形成良好的认知结构,才能有助于学生主动构建、才能提高学生洞察事务,寻求联系,解决问题的思维品质和各种能力,最终达到培养现代社会需要的创新人才的目的。数学思想方法寓于数学知识之中,所以,在数学教学中,应该把数学思想和方法的培养与数学知识融为一体,中学数学中涉及的数学思想主要有:方程的思想、函数的思想、化归的思想、转化的思想、数形结合的思想、分类讨论的思想等。因此,在中学数学教学中,必须重视培养学生这些基本的数学思想。

二、数学思想的基本特征

1、导向性 所谓导向性是指它是研究数学和解决数学问题的指导思想,是数学思维的策略,数学思想的导向性表现在它既是数学产生和发展的根源、又是建立数学体系的基础,还是解决具体问题“向导”。正如日本数学教育学家米山国藏所说:“数学的精神,思想是创造数学著作,发现新的东西,是数学得以不断地向前发展的根源。”比如极限的思想是微积分理论的基础,又是解决许多数学问题的重要方法,而在解决具体的问题中,数学思想往往起主导的作用,尤其是它对产生一个好“念头”、一种好“思路”、一种好“猜想”提供了方向。当然数学思想在指示解题方向时,还为数学方法的具体实施留有应变的余地。例如:解一元二次方程问题,尽管化归思想指导思维活动定向于目标X=A,但具体采用哪种化归的方法,如配方法、还是因式分解法、还是公式法,须具体问题具体分析。数学思想导向性的重要价值被爱因斯坦的名言所佐证:“在一切方法的背后,如果没有一种生气勃勃的精神,他们到头来,不过是笨拙的工具”。

2、概括性 人们的理性认识之所以高于感性认识,是因为理性认识能反映、揭示事物的普遍的必然的本质属性和联系,这就是理性认识的一个大特点。数学思想在这方面具有突出的表现,即数学思想具有较高的概括性,概括性程度的高低决定了数学思想有层次之分,概括化程度高,其“抽象度”大,对数学对象本质属性揭示得越深刻,对问题的理解也就愈透彻。如在几何中研究各种各样的角:两条相交直线所成的角;异面直线所成的角;直线与平面所成的角;这些角的度量方法最终可由化归思想的概括性统一为两条直线相交的角来度量,数学思想的概括性还表现在客观存在它能反映数学对象之间的联系和内部规律上,例如:有关二次三项式,一元二次方程,一元二次不等式等问题统统都可以归纳为一元二次函数图像与坐标轴交点问题的探究,同时也反映了函数思想是对数学的高度概括。

3、迁移性 高度的概括性导致数学思想具有广泛的迁移性,这种迁移性一方面表现在数学内部:数学思想是数学知识的精髓,这是数学知识迁移的基础和根源,是沟通数学各部分、各分支间联系的纽带和桥梁,是构建数学理论的基石。如由圆内接正多边形边倍增而趋于圆来求圆面积的极限思想,可进一步发展为分割术和微积分思想。另一方面,这种迁移性还表现在数学的外部;他还能沟通数学与其他学科、社会的联系,产生更加广泛的迁移。如公理化思想已超越数学理论范围,渗透到其他学科领域,如17世纪的唯心主义者宾莎仿效《几何原本》的公理化思想,把人的思想、情感、欲望当作几何学中的点、线、面来研究写出了《伦理学》。

三、数学思想方法教学的主要方式—渗透 数学思想方法教学所用的主要方式是渗透,所谓渗透,就是有机地结合数学知识的教学,采用教者有意,学者无心的方式,反复向学生讲解诸如分类、转化、数形结合、化归、函数等数学思想方法。通过逐步积累,让学生对数学思想方法的认识由浅入深,由表及里,循序渐进的达到一定的认识高度,从而自觉地运用之。

之所以采用渗透的方法,是由数学思想方法本身决定的。从知识和思想方法的关系来看,数学思想隐含在知识里,体现在知识的应用过程中,他不像知识那样可以具体编排在某一章、某一节,靠教师专门讲解就可以理解的。数学思想方法是渗透在全部数学教学内容之中的。从学生的认识规律来看,数学思想方法的掌握不像知识的理解可以短期内完成那样,而要经历一个过程,简单的表述为“了解”—“理解”—“掌握”—“运用”的过程。从学生的个别差异来看,也存在着认识不同步的现象,因此,数学思想方法的教学以采用渗透为宜。

四、数学思想方法的教学原则及实施

数学思想方法的教学既属于数学教学的范畴,又是特殊的数学教学,除遵循一般数学教学原则外,还应遵循以下教学原则:

1、化隐为显的原则 由于数学思想方法往往隐藏在知识的背后,知识教学虽然蕴含着思想方法,但是如果不是有意识的把数学思想方法作为教学对象,在数学学习时,学生往往会只注意到表层的数学知识,而注意不到处于深层的思想方法。因此,进行数学思想方法的教学必须以数学知识为载体,把隐藏在背后的思想方法显现出来,使之明朗化。

2、学生参与的原则 数学知识的教学与数学思想方法的教学有着显著的区别,数学知识的教学是数学认知活动的结果的教学,呈静态型,重在记忆理解;数学思想方法的教学是数学活动过程的教学,呈动态型,重在思辨操作。离开数学活动过程思想方法也就无从谈起,只有组织学生积极参与教学过程,才能使学生逐步领悟、形成、掌握数学思想方法。

3、渗透性原则 数学思想方法是融合在数学知识、方法之中的,所以采用渗透方式不失时机地抓住机会,密切结合教材,不断的,一点一滴的再现有关数学思想方法,逐步的加深学生对数学思想方法的认识。

4、渐进性原则 数学思想方法的渗透必须结合两个实际,即教材实际和学生实际,不同的教材内容有不同的要求,不同的学生也有不同的要求,要讲究层次,不能超越实际,要反复多次,小步的渐进。

5、发展性原则 用渗透的方式进行数学思想方法教学,开始是起点要低,但“低”是为了“高”。通过一个阶段的学习,应该在原有的基础上有所提高,要求学生“学会”并且“会学”,在思维素质方面有所提高。

为了切实落实上述原则,教学中还应注意:备课时要把掌握数学知识和学习数学思想方法同时纳入教学目标,并在教学设计中设计好数学思想方法的教学内容和教学过程;在每一个重要的数学思想方法形成阶段要精心设计好数学思想方法的训练课;对于不同类型的学生应有不同的教学要求。

五、教学中渗透数学思想方法的几点尝试 数学思想方法很多,这里仅就中学数学教材中和试题中常见的数形结合思想、分类讨论思想、转化思想作些探讨。

1、数形结合的思想:数形结合是中学数学中一种重要的数学思想方法,它指出了解决某些数学问题时应从“数”与“形”两者联系来考虑问题。“数”指数量关系;“形”指几何图形。数形结合就是抓住数与形之间的本质上的联系,以“形”直观的表达数,以“数”精确的研究型。我国已故数学家华罗庚指出:“数缺形时少直观,形缺数时难入微。”这充分说明了数形结合思想的重要性。中学数学中处处都蕴含着数形结合的思想。如:

1、已知正数x、y、z满足方程组

x+y=13(1)

y²+z²-yz=25(2)

z²+x²+xz=144(3)求z。

对(1)、(2)式的结构作分析,可转化为余弦定理 25=y²+z²-2yzcos60° 144=z²+x²-2xzcos120°

据此,我们可以构造几何图形来解。

解:作Rt△ABC,使AB=13,BC=12,在AB上取 点D使∠ADC=60°设BD=x,AD=y,CD=z,由面积关系 S△ABC=S△ACD+S△BCD

有 1/2BC•AC=1/2BDsin120°+1/2AD•DCsin60°= 3/4AB•DC 得 z=CD=2BC•AC/ 3AB=40 3/13 本题在求解时,由于观察到式(2)、(3)具有ɑ²+b²-2bcosθ的特征,因而联想到余弦定理而由数思形,使问题得到解决。

在解决数学问题时,通过观察分析数式的结构特征,可将ɑ>0与距离互化,将ɑ²(ɑb)与面积互化,将ɑ³(ɑbc)与体积互化,将 ɑ²+b²与勾股定理沟通,将ɑ²+b²±ɑb与余弦定理沟通,将∣ɑ-b∣

2、分类思想:分类讨论是一种重要的数学思想方法:是按照数学对象的相同点和相异点将数学对象区分为不同种类的思想方法(朱人杰.数学思想方法研究导论);分类讨论是根据需要对研究对象进行分类,然后将划分的每一类别分别进行求解,综合后即得答案(任子朝.数学标准解读)。分类讨论贯穿在整个中学数学学习的全过程,通过分类可以使大量繁杂的材料条理化、系统化,从而为人们进行分门别类的深入研究创造条件,分类讨论不仅在数学知识的探究和概念学习中十分重要,而且在解决数学问题过程中起着重要作用。学会用这种思想方法解决问题,对提高学生思维能力、解决问题的能力有很大作用。如:

2、已知函数y=x²-4ɑx+2ɑ+30的图像与x轴没有交点,求关于x的方程x/(ɑ+3)=|ɑ-1|+1根的范围

显然方程的根与参数ɑ的变化有关,要对ɑ进行分类讨论,从而获得方程根的取值范围。

因为函数y=x²-4ɑx+2ɑ+30的图像与x轴没有交点,所以

Δ=(-4ɑ)²-4(2ɑ+30)< 0 解得-5/2 <ɑ < 3 根据运算的需要,我们把这一范围分成两部分(-5/2,1],(1,3)进行讨论。

(1)、ɑ∈(-5/2,1]时 x=(ɑ+3)(2-ɑ)=-(ɑ+1/2)²+25/4 所以

当ɑ=-1/2时,xmɑx=25/4;

当ɑ=-5/2时,xmin=9/4。

所以,9/4<x≤25/4(2)、ɑ∈(1,3)时,x=(ɑ+3)ɑ=(ɑ+3/2)²-9/4,x(ɑ)在区间[1,3]上是增函数

xmin=x(1)=4;xmɑx=x(3)=18 4<x<18 综上所述,x的取值范围是(9/4,18)。

3、转化思想:在教学研究中,使一种对象在一定条件下转化为另一种研究对象的数学思想称为转化思想。体现在数学解题中,就是将原问题进行变形,使之转化为我们所熟悉的或已解决的或易于解决的问题,就这一点来说,解题过程就是不断转化的过程。中学数学涉及最多的是转化思想,如超越方程代数化、方程问题函数化、空间问题平面化、复数问题实数化等,为了实现转化,相应地产生了许多的数学方法,如消元法、换元法、图象法、待定系数法、配方法等。通过这些数学方法的使用,使学生充分领略数学思想在数学领域里的地位与作用。如:

3、解方程6x+7x³-36x²-7x+6=0 这是一个高次方程,x=0不是此方程的解,设想用一定的方法把这个高次方程转化为可解的熟悉的方程,为此将方程两边同时除以x²,得6x²+7x-36-7/x+6/x²=0,整理得

6(x-1/x)²+7(x-1/x)-24=0 令y=x-1/x,通过换元,把原方程转化为我们熟悉的一元二次方程

6y²+7y-24=0 解此方程求出y,在进一步求出原方程的解。在数学教学过程中,应该有计划的安排数学思想方法教学的习题课,在结合教材对数学思想方法教学注重平时渗透的基础上,每逢一个单元教学完成以后,不妨组织一堂习题讲评课,来强化对有关数学思想方法的训练,通过练习、小结、归纳加以提高。

数学思想是中学数学的重要组成部分,是知识转化为能力的桥梁,是实施素质教育的需要。时代赋予数学教师培养创新精神和创造性人才的使命,我们要不断转变教育观念,不断加深对数学思想教育的理解,革新教育思想、教育内容和教育方法,结合数学学科的特点,坚持启发性、主动性、发展性和反馈性的原则,注重培养学生的数学思想方法的能力,为21世纪培养高素质的建设人才。日本著名数学教育家米山国藏曾说过:“学生在初中或告中所学到的数学知识,在进入社会之后,几乎没有什么机会应用,因而这种作为知识的数学通常在出校门不到一两年就忘记了,然而不管他们从事什么业务工作,那种铭刻于头脑中的数学精神和数学思想方法却长期的在他们生活中发挥着作用。”

转化思想在小学数学教学中的应用

“转化”在小学数学中的应用【前言】转化思想是数学思想的重要组成部分。它是从未知领域发展,通过数学元素之间因有联系向已知领域转化,将未知的,陌生的,复杂的问题通过演绎归纳......

浅谈数学建模思想在初中教学中的应用

浅谈数学建模思想在初中教学中的应用小勐统中学 李发娣【摘要】在教学中渗透数学建模思想,适当开展数学建模的活动,对培养学生的能力发挥重要的作用,也是数学教学改革推进素......

数学思想在因式分解教学中的渗透与应用

数学思想在因式分解教学中的渗透与应用肃州区红山中学李德涛一、类比思想的渗透与应用在因式分解的教学中,引导学生将因式分解与因数分解进行类比能收到很好的效果。(1)从学习......

高等数学中极限思想在中学数学中的渗透

本科生毕业论文题目:高等数学中极限思想在中学数学中的渗透学生姓名:段锡朋学 号:20121050225 专 业:数理基础科学 指导教师:葛瑜2016年4月27日 目录摘要 .........................

论韩非“法治”思想在现代管理中的应用

论韩非“法治”思想在现代管理中的应用【摘要】 从法家思想的源流出发,探讨其重要代表人物韩非的“法治”思想在现代管理中的运用和借鉴,同时对其历史局限亦作出大胆扬弃,以......

《现代数学思想在中学数学教学中的应用(定稿).docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
现代数学思想在中学数学教学中的应用(定稿)
点击下载文档
相关专题 中学数学教学应用 中学数学 定稿 思想 中学数学教学应用 中学数学 定稿 思想
[其他范文]相关推荐
[其他范文]热门文章
下载全文