函数的奇偶性(教案)_函数的奇偶性优秀教案

2020-02-26 教案模板 下载本文

函数的奇偶性(教案)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“函数的奇偶性优秀教案”。

3.4函数的奇偶性

教学目标:

1、理解并掌握偶函数、奇函数的概念;

2、熟悉掌握偶函数、奇函数的图像的特征;

3、会证明一些简单的函数的奇偶性。

教学重点:偶函数、奇函数的概念,判断函数的奇偶性; 教学难点:函数的奇偶性的定义的理解。教学过程:

1、创设情境,直观感受

(1)请同学们欣赏图片,并根据图片说一说这些图片具有怎样的对称性。这些图片展现了数学的对称美,他们是轴对称图形或者中心对称图形。我们熟知的函数中也有如此美的图像。函数的图像一般都是呈现在直角坐标系中的,而在我们直角坐标系中,有2条坐标轴以及一个点,今天我们所要研究的就是在坐标轴中的对称。有三种,关于y轴对称,关于原点对称,关于x轴对称。请问,一个函数图像可能关于x轴对称吗?(这个学生应该比较好回答。)那么就只有2种关于y轴对称和关于原点对称。(这里要复习一下一个点关于y轴对称和关于原点对称的点的坐标特点。)

请同桌讨论一下,举出我们所学习的函数中图像是关于y轴对称或者关于原点对称。

(请2组同学进行汇报,并且将函数的大致图像画到黑板上。)

2、概念引入,理性分析

(1)从函数图像上诠释研究奇偶函数的价值

根据同学举得例子,来探讨这2类函数研究的价值:因为这2类函数具有美丽的对称性,那么我们在画函数图像的时候只需要作出一半的图像,另外一半对称过去就可以;而且在研究函数性质的时候,只需要研究一半,另外一半的性质也可以相应的得出。

(2)从符号语言、解析式来诠释奇偶函数

既然这2类函数具有特殊的对称性,那么如何证明这种对称性呢?

(此处引导学生:图像是点集,要证明图像的性质,只需要证明点的性质即可。)第一组图像中的点1,f(1),它关于y轴的对称点为1,f(1),下面证明1,f(1)点在函数的图像上即可,如何证明点在函数图像上呢?只需要证明点的坐标满足函数解析式即可(带入证明)。同样的对于点2,f(2),它关于y轴的对称点为2,f(2),下面说明点2,f(2)在函数图像即可。依次下去,需要验证多少个点才可以?(无数个),那么这样太麻烦,我们想一个简单的方式,找一个具有一般性的点a,f(a),它关于y轴的对称点为a,f(a),下面证明点a,f(a)在函数图像即可,依然是带入验证。

(归纳刚才的研究过程,得出偶函数的定义)

(1)偶函数的定义:

如果对于函数yf(x)的定义域D内的任意实数x,都有f(x)f(x),那么就把函数yf(x)叫做偶函数。

(关键词:“任意”即“所有”、“每一个”)(可提问同学此定义的关键词是什么?)

(2)偶函数的性质:

①定义域关于原点对称;(依据:定义域D内的任意实数x,都有f(x)f(x),也就是说f(x)f(x)是恒等式,恒等式要成立的前提是有意义,xD且xD,得出定义域关于原点对称)

②偶函数的图像关于y轴对称。(依据:有偶函数的定义即可得到)③偶函数中有恒等式f(x)f(x)成立。

(数学中,有“偶”就有“奇”,请同学们类比得出奇函数的定义与性质)(提示同学们从下面几点进行研究:①奇函数图像的特征;②奇函数的定义;③奇函数的性质)

(3)奇函数的定义

如果对于函数yf(x)的定义域D内的任意实数x,都有f(x)f(x),那么就把函数yf(x)叫做奇函数。

(4)奇函数的性质:①定义域关于原点对称;

②奇函数的图像关于原点对称。

③奇函数中有恒等式f(x)f(x)成立。

根据奇函数的定义,请同学们自己列举奇函数的例子。

3、例题分析,巩固理解 例

1、(根据学生列举的奇函数的例子,提问,如何求证此函数是奇函数?依据:定义。)例

2、求证函数f(x)x21是偶函数。

3、判断下列函数的奇偶性

(1)yx22,x3,3

(2)y0,x1,1

(此处分析既奇又偶函数的特征:解析式一定是y0的形式,主要就是在定义域上做文章。)

小结:如何判断函数的奇偶性

(1)一看:看定义域是否关于原点对称,如果不关于原点对称,则非奇非偶;(2)二找:找f(x)与f(x)的关系;(3)三判断:根据关系,下结论。

4、(如果时间充足,可作为拓展题目)已知yf(x)是偶函数,它在y轴右边图像如图所示,画出yf(x)在y轴左边的图像。(同学做好,可以投影展示)

4、课堂小结

(1)函数奇偶性的定义;(2)判断函数奇偶性的步骤

6、布置作业

函数奇偶性教案

函数的奇偶性授课教师——李振明授课班级——高一(8)教学目的:1、使学生理解函数的奇偶性的概念,并能判断一些简单函数的奇偶性;2、进一步培养学生分析问题和解决问题的能力。 教......

函数奇偶性教案

§1.3.2函数的奇偶性教学目标1.知识与技能:理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性;2.过程与方法:通过函数奇偶性概念的形成过......

函数奇偶性教案

函数的奇偶性廖登玲一、教学目标:1、知识与技能 :理解奇函数、偶函数的概念,掌握判断函数奇偶性的方法;2、过程与方法:通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;......

函数奇偶性应用教案

函数奇偶性的简单应用知识与技能:(1)掌握函数奇偶性的定义以及奇偶函数图象特点,并能灵活应用; (2)会判断函数的奇偶性;会运用函数奇偶性求函数值和参数.过程与方法:通过具体例......

《函数的奇偶性》教案

《函数的奇偶性》教案一、教学目标【知识与技能】理解函数的奇偶性及其几何意义【过程与方法】利用指数函数的图像和性质,及单调性来解决问题【情感态度与价值观】体会指数......

《函数的奇偶性(教案).docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
函数的奇偶性(教案)
点击下载文档
相关专题 函数的奇偶性优秀教案 教案 函数 奇偶性 函数的奇偶性优秀教案 教案 函数 奇偶性
[教案模板]相关推荐
[教案模板]热门文章
下载全文