认识比教学设计(精选6篇)_认识比教案教学设计
认识比教学设计(精选6篇)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“认识比教案教学设计”。
第1篇:《认识比》教学设计
《认识比》教学设计
教学内容:人教版六年级上册第四单元《比》(p48-49)。教学目标:
1.使学生理解比的意义,知道比表示两个数相除,可以用来表示两个量之间的倍数关系,学会比的读写方法,认识比的各部分名称。
2.经历从具体情境中抽象出比的过程,理解比的意义,会求比值。3.体会比在生活中的广泛存在,感受比在生活中的广泛运用,感受比的价值。教学重点:理解比的意义。
教学难点:辨析比赛中的比分与数学中的比的区别;理解非同类量相比的比值的含义。教学准备: 教具准备:课件
学具准备:数学书、笔、课堂本 教学过程: 课前热身
12.8÷4=
46.7-3.8=
4.95×1000=
1.25×0.8=
130×300=
6.9×0.1=
6.8+4.2=
1.25×16×8=
一、谈话导入
(一)请学生说一说有关比字的句子。生1:我比我同桌高。
生2:我们班男生比女生多。
生3:篮球比赛时比分为15:20。
(二)同学们,你知道像这些比和我们今天要学习比有什么不一样吗?今天,就让我们一起来来学习数学上的比和生活上的比有什么不一样吧。板书:认识比
二、浏览课本内容,交流自学感受(重点交流学生通过预学学到了什么)
观看微课。(复习预习的重点和难点知识)
三、完成知识卡
(一)体会面粉和水的比(2∶1)的特点。
妈妈需要和(huo)一些面做馒头,面粉和水的比(2∶1),它们的质量有可能是多重?面粉是水的几倍?
(二)比的意义和读法、写法
(1)两个数的比表示()。(2)5比3记作()。
(3)在两个数的比中,()是比号,()叫做比的前项,()叫做比的后项。比的前项除以后项所得的商,叫做()。
(4)比值通常用()表示,也可以用()或()表示。(5)想一想,比的后项可以是0吗?
22(6)看作比时,读作()。看作比值时,读作()
5想一想:比的后项可以是0吗?
(三)一场足球比赛的上半场结束了,场上比分是2∶1,那他们的下半场比分可能是几比几?它们之间的倍数关系是多少呢?
四、展示交流
(一)组内交流(重点交流学生的疑难点,师巡视课堂,了解学生的学习情况)
(二)全班展示、交流
1.体会比在生活中的广泛应用。(学生通过小组合作交流,说出面粉和水的质量可能是多少,使学生体会面粉与水的质量比存在倍数关系)
(1)师:面粉和水的比为(2∶1),面粉和水可以是多重?面粉是水的几倍? 小组合作讨论,指名学生汇报
生1:面粉2kg,水1kg;面粉2斤,水1斤 生2:面粉1000g,水500g„„(2)师追问:为什么可以这样取呢?
生:因为面粉是水的2倍。面粉取2kg,水就要是1kg。
师:面粉是水的2倍是怎么求出来的呢? 生:用2除以1等于2。
师:也就是2比1就表示2除以1等于2,所以两个数的比就表示两个数相除。师:除了可以这样表示面粉是水的两倍,还可以表示水是面粉的几分之几? 生:还可以表示水是面粉的二分之一,水和面粉之比为1∶2=1÷2=0.5。
(3)师小结:是的,和(huo)面可以根据面粉和水的比来确定它们的重量各占多重,它们的单位都相同,都表示质量单位,它们的关系是一种倍数关系。师板书:
两个数的比表示两个数相除
面粉
水(倍数关系)2 ∶
1=2÷1= 2 ……………………
前比后比 项号项值
适时渗透比和除法、分数的倍数关系。
2.理解比的意义和读、写法和比的各部分名称。(学生通过填空加深学生对比基础知识的 巩固)
师:同学们,通过了解了面粉和水的比,你知道比的意义和读写法吗?下面的几道题你们能独立完成吗?指名学生回答。生1:两个数的比表示两个数相除。生2:5比3记作5∶3。
师:同学们还可以写出一些比吗?谁能上来写一写?
学生上台演示,师引导正确的写法。师:那你认识比的各部分名称吗?
生:在两个数的比中,“∶”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项的所得的商,叫做比值。
师:比值通常可以用什么数来表示呢?
生:比值通常可以用分数表示,也可以用小数或整数表示。
5师:回答的真不错!当比是5∶3时比值是,当比是2∶4时比值是0.5,当4∶2时比值
3是2。
师追问:比的后项可以是0吗? 生:比的后项不能为0。
师:当一个分数看作比和比值时,它们的读法有什么不同?
22生:5看作比时,读作2比5。5
看作比值时,读作五分之二。
3.体会生活中的其它比和面粉和水的比具有这样的特点吗。(学生通过交流,发现生活中的比赛得分比中会出现0,和数学上的比不一样,比赛的得分比是一种计分形式,是相差关系,而数学上的比是倍数关系,相除关系)
学生先小组合作交流,然后汇报结果。
(学生齐读)一场足球比赛的上半场结束了,场上比分是2∶1,那他们的下半场比分可能是几比几?它们之间的倍数关系是多少呢?
师:有想法了吗? 指名学生回答:
师:接下来我们看看足球比赛的比分有没有倍数关系?一场足球比赛的上半场结束了,场上比分是2∶1,那他们的下半场比分可能是几比几?
学生集体回答,师生交流。(通过师生交流,引导学生发现比赛得分只是一种记分形式,不存在倍数关系)
生:第二场比赛开始时是得分比为0∶0,后来五(1)班进了一个球,比分为1∶0。五(2)班继续进球,得分比为2∶0,五(2)班进一个球,比分变为2∶1,接着五(1)班进一个球,比分为3∶1„„
师小结:这场足球比赛中,比分在不断的变化,比赛时比分还可能一个球都没进,出现了0,所以比分不存在倍数关系,所以各类比赛中的比不是我们这节课学习的比,它只是一种记分形式,是比较大小的,是相差关系,不是相除关系。
五、回顾课本
(一)学生自主回顾课本P48_49,学生质疑。知道比的意义:两个数的比表示两个数相除,比是除法关系的一种表达形式。知道比的各部分名称,会求比值。
(二)知道用比来表示路程和时间的关系:路程和时间的比是42252:90,两个数单位不一样,也可以用比来表示两个数相除。(进一步理解比的意义:两个数的比表示两个数相除)
(三)通过回顾课本49页比与分数和除法的关系,两个数的比也可以写成分数形式。理解比与除法、分数之间的联系。
五、美好检测
1.下面的信息有比吗?如果有,请你写出来。
①妈妈按菜谱介绍,放3勺糖4勺醋调制了糖醋汁,这样口感更佳。
3②要绘制一张篮球海报,规定海报的宽是长的。
2.小敏和小亮在文具店买同样的练习本。小敏买了6本,共花了1.8元。小亮买了8本,共花了2.4元。小敏和小亮买的练习本数之比是():(),比值是();花的钱数之比是():(),比值是()。
小敏所花的钱数和练习本数之比是():(),比值是()。
153.12∶4=()
:5=()
4: 8 =()
15∶10=()÷10=10
六、美好拓展
4、如果规定海报的宽是长的3。下面3张海报符合要求吗?为什么?
4①
②
③
七、回顾总结,交流收获
说说这节课我们学习了什么?你有什么收获或问题? 板书设计
认识比
两个数的比表示两个数相除 面粉
水(倍数关系)
∶
= 2÷1 = 2 …………
教学反思:
……前比项号 …后项5
…比值
第2篇:认识比教学设计
《认识比》教学设计 平桥小学
潘红星 教学目标:
1.理解比的意义,知道比是表示两个数之间的一种关系。2.会读比、写比、知道比的各个部分名称。3.渗透“变与不变”的函数思想。
教学重点:理解比的意义,知道比是表示两个数之间的一种关系。教学难点:沟通比与倍数、分数(百分数)、除法之间的内在联系。教学过程:
一、导入新课 1、直接出示例1
2、你在图上看到了什么?
3、2杯果汁和3杯牛奶这两个数量之间有什么样的关系呢?你会用哪些方法表示它们的之间的关系? 4、根据学生的回答板书 相差关系:牛奶比果汁多一杯
果汁比牛奶少一杯
倍数关系:果汁的杯数是牛奶的2/3
牛奶的杯数是果汁的3/2 提问:果汁的杯数是牛奶的2/3和牛奶的杯数是果汁的3/2是怎么得来的呢? 板书:2÷3 3÷2 指出:以上是我们以前所学习的表示两种数量之间的关系,其实他们之间还有着另外一种数学关系。揭题、板书:比
二、探究新知
(一)教学例1
1、老师教学:果汁的杯数是牛奶的2/3,还可以说成果汁与牛奶的比是2:3 2、试问:你会试着表示牛奶与果汁杯数的比吗? 3、教学写法
2比3,记作2:3,读作2比3 4、追问:
2:3,是哪个量与哪个量之间的比呢? 3:2呢?
指出:两个数的比是有一定的顺序的,要正确表达两个数的比不能颠倒顺序。试写4个比。
(二)教学试一试
1、提问:图中的四个比分别表示什么含义,是哪个量与哪个量的比呢? 2、教学份数:如果把每种溶液中的洗洁液看作1份,那么水可以看作这样的几份呢?
3、还可以怎么样表示洗洁液与水的体积关系。
(三)教学例3
1、出示例题,学生填表
提高小军和小伟的速度是怎样求出来的?
谈话:速度=路程÷时间,速度实际上表示了路程和时间的关系,我们也可以用比来表示他们的关系,你能试着写写两个同学路程与时间的比吗? 根据交流板书:
小军走路程与时间的比是900:15 小伟走路程与时间的比是900:20 2、提问:900:15表示什么?900:20又表示什么? 3、揭示比的意义
启发:看黑板上的2:3和3:2,例2中的900:15,900:20,还有试一试中的洗洁液与水的关系,想一想,比和什么有关系。两个数的比还可以表示什么? 小组交流 引导发现
小结,板书,自学比各部分的名称。P69 教学求比值。并将前几个比的比值口算出来。
(四)教学试一试
1、学生独立填写,你发现了什么
2、小结:根据分数与除法的关系,两个数的比还可以写成分数和形式,但读时仍按比的读法来读。3、启发:在刚的等式中,你发现了什么?比的前项相当于除法中的什么?相当于分数中的什么?比的后项相当是什么?比值呢? 4、小结:
比、除法、分数是有联系的,比的前项相当于除法中的被除数,比的后项相当于除数,比值相当于商。比的前项还相当于分数中的分子,比的后项相当于分数中的分母,比值相当于分数值。
比、除法、分数的区别:比表示两个数的关系,除法是一种运算,分数是一个数。提问:根据你刚才所学的知识,结合以前的知识,想一想,比的后项能是0吗?
三、课堂练习
(一)完成练一练
学生独立完成,并问一问比值的意义。
(二)完成练习十3第1-5题
追问:三小题的比值是每种水果的什么?
(三)完成第3题
根据计算结果,你有什么发现?
(四)完成第4、5小题 组织学生交流汇报
四、总结
通过这节课的学习,你有什么收获?还有什么遗憾呢?
第3篇:认识比教学设计
《认识比》教学设计
吴圩小学 谢宗宇
教学内容:
苏教版六年级上册第五单元第1课时。
教学目的:
1、使学生在具体情境中理解比的意义,掌握比的读、写法,知道比的各部分名称,会求比值。
2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系。
3、使学生在观察、思考、和交流等活动中,培养分析、综合、抽象概括的能力,进一步体会数学知识之间的内在联系,体验数学学习的乐趣。
教学重点、难点:
重点:理解比的意义、读法和写法,求比值的方法。难点:比的意义以及比与分数、除法之间的关系。
教学过程:
一、导入,引出比,引导学生自学。
1、投影出示:2杯果汁和三杯牛奶。师:从图中你获得什么信息? 学生回答。
2、引导学生描述两个数量之间的关系。
师:请你根据已经学习过的知识,用一句话来描述一下这两个数量之间的关系。引导:比如,果汁不牛奶少1杯。
学生回答。
教师归纳用投影出示:(1)果汁比牛奶少1杯,牛奶比果汁多1杯。
引导;这一类描述是用什么方法得到的?
相差。
(2)果汁是牛奶的2/3,牛奶是果汁的3/2。
引导:这一类描述又是用什么方法得到的?
相除。
3、导入比
说明:如果用两个数量相除表示它们之间的关系,那么还有另一种方法,这种方法,我们叫做“比”。(板书)有关比的知识,书上为我们说得很清楚,现在就请大家先自学一下,看看书本这位“老师”告诉我们哪些知识。请大家自学书本68页上半部内容。
学生自学。
二、新知学习,进一步认识比
一)认识比,了解比的读法和写法。
1、自学引导,投影出示:
果汁与牛奶的杯数比是2比3; 牛奶与果汁的杯数比是3比2。引导学生思考回答: 在2比3中,“2”表示的是什么?“3”表示的是什么?“2比3”表示的是什么? 在3比2中,“3”表示的是什么?“2”表示的是什么?“3比2”表示的是什么? [强调:用比来表示两个数量之间的关系,特别要注意哪个数量在前,哪个数量在后,如果前后的位置颠倒了,那么比的意义也就变了。]
2、学会比的读法与写法。
2比3 3比2 师:这就是比的读法,那么在数学上,2比3和3比2又记作什么?通过刚才的自学,你能写出来吗?
指名板演,其余学生在本子上独立完成。集体判断、评价。(1)认识比号;
(2)认识比的前项和后项。
3、完成P68“试一试”。
A,读出各种溶液中洗洁液与水的份数比;
B、除了用比表示洗洁液与水的关系,还可以怎样表示? C、屏示填空: 第一种溶液中:洗洁液是水的比是1/8,第二种溶液中,洗洁液是水的(),第三种溶液中,洗洁液是水的(),第四种溶液中,洗洁液是水的(),二)学习比的意义。
1、出示例2,引导学生计算填空。
2、引导:小军的速度是多少?小伟的速度是多少?
求速度是用什么方法求的?(除法)(路程÷时间=速度),3、说明:因为求“速度”可以用“路程÷时间”,所以这里的“路程“和”时间”之间的存在着相除的关系,因此“路程”和“速度”之间也可以用“比”来表示。
4、填空:小军的路程与时间的比是()
小伟的路程与时间的比是()
5、归纳、揭示:“只有两个量之间存在相除关系,才能组成比。
6、进一步描述比的意义:两个数的比就表示两个数相除关系。(板书),强调:两个数相除也表示两个数的比。
三)、学习求比值的方法
1、引导读书:看书69页,并将书中最重要的一句话用笔划下来
学生齐读。
2、思考:后一句告诉我们什么叫“比值”,那么怎样求比值? 学生回答,板书:前项÷后项,所得的商叫比值)
3、总结:用比的前项÷比的后项,可以得到的一个数值就是比值。
4、总结强调:一个比的比值可以是整数、也可以是分数或小数。四)、认识比、除法与分数的关系。
1、引导学生看板书2:3=2÷3=2/3。
2、学生交流填表。
3、学生小组内再次互相说说。
4、集体总结比、除法、分数之间的关系。五)学习比的两种形式的写法。
1、说明:2比3可写写成2:3,这是一般形式,我们也可以把它写成分数形式,(板书),这种形式我们仍然读作2:3。分数形式的比,先写前项,后画横线,在写后项。
2、练习(1)、把下面一般形式的比改写成分数形式的比,并读一读。
4:5=()
12:7=()
(2)、读出下面分数形式的比。
2/9
13/12
1/20(3)、分别用两种形式写出下面的比。
一般形式
分数形式
7比8
()
()9比5
()
()
[设计意图:分步、分知识点进行教学,让学生对有关比的认识有一个清晰的认知,能够构建比的知识网络;通过及时的分步练习,及时巩固学生对所学知识掌握程度]
三、综合练习
1、联系班级男女生人数填空。全班有男生20人,有女生10人。(1)男生与女生的人数比是();(2)20:10是()与()的比。(3)20:30的前项是(),表示的是()后项是(),表示()。这个比表示的是()与()的比。
2、张强买3本笔记本一共用去10.5元,笔记本总价和数量的比是(),比值是(),这个比值表示()。
3、完成练习十三第2题。
4、求比值:
45:3
2:0.5
25/15
600千克:1千克
四、课堂总结
通过一节课的学习,你有什么收获?请在小组内将你的收获与其他同学共享一下。学生代表发言。
2012
年11月
第4篇:认识比教学设计
《认识比》教学设计
博里镇新荡小学 贾开娟
教学内容:
义务教育课程标准实验教科书苏教版六年级上册第五单元第1课时。
教学目的:
1、使学生在具体情境中理解比的意义,掌握比的读、写法,知道比的各部分名称,会求比值。
2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系。
3、使学生在观察、思考、和交流等活动中,培养分析、综合、抽象概括的能力,进一步体会数学知识之间的内在联系,体验数学学习的乐趣。
教学重点、难点:
重点:理解比的意义、读法和写法,求比值的方法。难点:比的意义以及比与分数、除法之间的关系。
教学过程:
一、导入,引出比,引导学生自学。
1、投影出示:2杯果汁和三杯牛奶。师:从图中你获得什么信息? 学生回答。
2、引导学生描述两个数量之间的关系。
师:请你根据已经学习过的知识,用一句话来描述一下这两个数量之间的关系。引导:比如,果汁不牛奶少1杯。
学生回答。
教师归纳用投影出示:
(1)果汁比牛奶少1杯,牛奶比果汁多1杯。
引导;这一类描述是用什么方法得到的?
板书:相差。
(2)果汁是牛奶的2/3,牛奶是果汁的3/2。
引导:这一类描述又是用什么方法得到的?
板书:相除。
3、导入比
说明:如果用两个数量相除表示它们之间的关系,那么还有另一种方法,这种方法,我们叫做“比”。(板书)有关比的知识,书上为我们说得很清楚,现在就请大家先自学一下,看看书本这位“老师”告诉我们哪些知识。请大家自学书本68页上半部内容。
学生自学。
[设计意图:通过生活中的物体设计情景引入新知学习,让学生有一种实际感,从而更容易产生认知上的共鸣;利用旧知引导学生复习两个数量之间的关系,为引入比的教学设下铺垫;结合学生的实际情况,直接引入比,让学生自学,既可以使激发学生的学习兴趣,同时也能提高学生自主学习的能力和合作交流的能力。]
二、新知学习,进一步认识比
一)认识比,了解比的读法和写法。
1、自学引导,投影出示:
果汁与牛奶的杯数比是2比3; 牛奶与果汁的杯数比是3比2。引导学生思考回答: 在2比3中,“2”表示的是什么?“3”表示的是什么?“2比3”表示的是什么? 在3比2中,“3”表示的是什么?“2”表示的是什么?“3比2”表示的是什么? [强调:用比来表示两个数量之间的关系,特别要注意哪个数量在前,哪个数量在后,如果前后的位置颠倒了,那么比的意义也就变了。]
2、学会比的读法与写法。板书:2比3 3比2 师:这就是比的读法,那么在数学上,2比3和3比2又记作什么?通过刚才的自学,你能写出来吗?
指名板演,其余学生在本子上独立完成。集体判断、评价。(1)认识比号;
(2)认识比的前项和后项。
3、练习
(1)说出下列比的前项和后项。
2:5
70:8
0.5:3
1/3:2(2)完成P68“试一试”。
A,读出各种溶液中洗洁液与水的份数比;
B、除了用比表示洗洁液与水的关系,还可以怎样表示? C、屏示填空: 第一种溶液中:洗洁液是水的比是1/8,第二种溶液中,洗洁液是水的(),第三种溶液中,洗洁液是水的(),第四种溶液中,洗洁液是水的(),二)学习比的意义。
1、出示例2,引导学生计算填空。
2、引导:小军的速度是多少?小伟的速度是多少?
求速度是用什么方法求的?(除法)(路程÷时间=速度),3、说明:因为求“速度”可以用“路程÷时间”,所以这里的“路程“和”时间”之间的存在着相除的关系,因此“路程”和“速度”之间也可以用“比”来表示。
4、填空:小军的路程与时间的比是()
小伟的路程与时间的比是()
5、归纳、揭示:“只有两个量之间存在相除关系,才能组成比。
6、进一步描述比的意义:两个数的比就表示两个数相除关系。(板书),强调:两个数相除也表示两个数的比。
三)、学习求比值的方法
1、引导读书:看书69页,并将书中最重要的一句话用笔划下来
学生齐读。
2、思考:后一句告诉我们什么叫“比值”,那么怎样求比值? 学生回答,板书:前项÷后项,所得的商叫比值)
3、总结:用比的前项÷比的后项,可以得到的一个数值就是比值。
4、练习:
(1)分别求出下面各个比的比值。
10:5 =()÷()=()2:6 =()÷()=()9:8 =()÷()=()(2)分别说出下面各个比的比值
40:20=()
3:7=()
2.4:1.2=()
5:0=()
5、总结强调:一个比的比值可以是整数、也可以是分数或小数。四)、认识比、除法与分数的关系。
1、引导学生看板书2:3=2÷3=2/3。
2、学生交流填表。
3、学生小组内再次互相说说。
4、集体总结比、除法、分数之间的关系。五)学习比的两种形式的写法。
1、说明:2比3可写写成2:3,这是一般形式,我们也可以把它写成分数形式,(板书),这种形式我们仍然读作2:3。分数形式的比,先写前项,后画横线,在写后项。
2、练习(1)、把下面一般形式的比改写成分数形式的比,并读一读。
4:5=()
12:7=()
(2)、读出下面分数形式的比。
2/9
13/12
1/20(3)、分别用两种形式写出下面的比。
一般形式
分数形式
7比8
()
()9比5
()
()
[设计意图:分步、分知识点进行教学,让学生对有关比的认识有一个清晰的认知,能够构建比的知识网络;通过及时的分步练习,及时巩固学生对所学知识掌握程度]
三、综合练习
1、联系班级男女生人数填空。全班有男生20人,有女生10人。(1)男生与女生的人数比是();(2)20:10是()与()的比。(3)20:30的前项是(),表示的是()后项是(),表示()。这个比表示的是()与()的比。
2、张强买3本笔记本一共用去10.5元,笔记本总价和数量的比是(),比值是(),这个比值表示()。
3、完成练习十三第2题。
4、求比值:
45:3
2:0.5
25/15
600千克:1千克
[设计意图:联系班级实际的情况,设计练习,让学生既能运用知识,也能体会数学知识与生活的练习,从而进一步激发学生对数学知识的学习兴趣。]
四、课堂总结 通过一节课的学习,你有什么收获?请在小组内将你的收获与其他同学共享一下。学生代表发言。
[设计意图:课堂小结是课堂教学必不可少的一个环节,利用学生小组交流,让学生将所学的知识进行梳理,形成对知识构成有一个清晰的认识;先小组共享,后集体交流,这样可以激发学生对学习活动的参与热情,加深学生对知识的掌握。]
第5篇:比的认识教学设计_
《比的认识》教学设计_模板
《比的认识》教学设计
原素芳
大家好,我是阳城县小学数学”读写说”习惯养成课题组成员,来自演礼乡中心学校的原素芳。很高兴能在”读写说”习惯培养的微信平台与您相遇。
课前思考
”比”是各版本教材六年级上册的教学内容,北师版教材这样定义”比”,即”两个数相除又叫做两个数的比”,翻阅其他版本也是如此(人教版、苏教版)。通过比较发现,这些教材都涉及了这些知识点:比的意义、同类量的比和不同类量的比、比各部分的名称、求比值、比与分数、除法的关联,知识点多。那么该怎么处理这么多知识点?平均用力显然会缺乏深刻。因此,在本课的设计过程中,我重点在这三个方面用力:一是比的意义的理解,二是理解生活中的比分和数学中的比是不一样的,三是认识同类量的比和非同类量的比。而比各部分的名称、求比值可以弱化处理。
就比的意义理解,我们可以进一步思考:比的本质是什么呢?仅仅是表示”相除关系”吗?查阅资料,在刊《小学教学》(数学版)2009年第6期的《比是什么》一文中,王永教授指出:”比源于度量,度量解决了物体可度量的属性(长度、面积、体积、质量)的可比性,比却能够解决物体不可度量的属性(颜色、形状、质地等)的可比性。这就是比的本质。”也就是说,比更多是为了表征隐含于数量之中的、不可度量的属性。
至此,我们可以对比不同版本的情境引入图:北师版课本中的情境图,”哪几张图片与图A比较像”,苏教版的情境图”2杯果汁和3杯牛奶”,直截了当的研究”相除”显得突兀一些。我们知道”甜度”是很难直接度量的,如果改成”调制蜂蜜水”的活动,用”蜂蜜”和”水”的比就能比较几种不同配法的”甜度”一样。这和只就一组数据(比如一个长方形的长和宽)直截了当的研究”相除”并产生比要深刻得多。随后引入洗洁液、不同类量的比、比分等素材,这些学生身边司空见惯的生活事件,可以从正面强化、或从反面辨析,打开思维空间,层层推进中不断明晰比的特征和价值。
教学目标
1.理解比的意义,知道比表示两个数相除,可以用来表示两个量之间的倍数关系,也可以相比产生一个新的量。
2.认识比各部分名称,会求比值。
3.体会比在生活中的广泛应用,感受比的价值。
教学重点
理解比的意义、感受比的价值。
教学过程
一、创设情境,引出”比”.1.从”如何调制蜂蜜水”引入新课。
琳琳到王阿姨家作客,王阿姨用蜂蜜和水调了一杯蜂蜜水给他喝,甜味适中。几天后,琳琳家来了几位好朋友,他也想调制这样的蜂蜜水给客人喝。可是怎么泡呢?他打电话给王阿姨,王阿姨说:”我是把10毫升蜂蜜加到90毫升水中的。”
2.讨论配置过程中”甜度适中”最重要的是什么?”
(1)思考:如果你是琳琳,听了王阿姨的介绍,会怎样来调制蜜水招待小伙伴们呢?
(2)交流:调制蜂蜜水的办法。
(3)引导:调制蜂蜜水的方法大家找到这么多。不过,蜂蜜的量在变,水的量也在变,为什么配制出的蜂蜜水依然”甜味适中刚刚好”呢?
(4)观察:我们注意到了蜂蜜和水之间的倍数关系。它们的倍数关系可以用算式表示(板书”90÷10=9,10÷90=1/9”.)用两个数相除,就可以得出它们之间的倍数关系。从这个不变的倍数关系中,我们是不是可以看出,取1份蜂蜜,就要取多少份水来搭配?
(5)介绍:这种情况,在数学上还有一种简洁的表示方式(显示”水的量和蜂蜜的比是9:1”“蜂蜜的量和水的比是1:9”)。这里的”9:1”和”1:9”我们叫做比。
(6)自主阅读课本”认一认”部分,学习比的各部分名称。
3.揭示课题。
二、结合情境,解释”比”.1.说出洗洁精配置瓶上的比,说含义。
师:”9:1”和”1:9”这两个比的意思一样吗?(生发表看法)
说一说:跟除法算式一样,比也是有顺序的。
读一读:体会他们的前后顺序。(学生齐读。)
2.用图示表示”2:3”深化理解。
(出示图示)
(1)分一分、涂一涂,表示出这个比。
生动手涂。
(2)从这幅图中,你还能想到谁和谁的比是几比几?
预设:
生1:还能想到水和洗洁液的比是3:2.生2:我还能想到洗洁液和总量的比是2:5.生3:水和总量的比是3:5.……
三、类比联想,理解”比”
1.认识不同类量的比。
(1)谈话:从刚才的研究中,我们确实可以看出,比就是表示倍数关系。不过呀,这还只是”比”的含义的冰山一角。老师告诉你,只要两个数相除的关系,都可以用比来表示。
(2)呈现教材内容,回顾相除关系:总价÷数量=单价,路程÷速度=时间。
(3)学生将这些相除的关系用比表示出来。(表示,如:总价÷数量=单价,也就是总价和数量的比是9:2、15:3、15:2;路程÷速度=时间,也就是路程和速度的比是40:2、40:3)
(4)交流:每一个比值分别表示什么?
(5)沟通:比有时表示倍数关系,有时还表示一种具体的量。
四、链接生活,拓展”比”.1.素材一:比赛比分之”比”与相除意义之”比”.师出示足球、篮球比赛图片和比分。
(1)提出问题:知道这里的2:0、18:23什么意思吗?
(2)独立思考——同桌交流——全班交流。
(3)引导进一步辨析。
(4)得出结论:生活中我们见到的最多的比分,不同于我们刚才研究的两个数相除之比。
2.素材二:农家生活中的”比”.出示问题:
王伯伯家有2公顷小麦试验田,今年共收小麦24吨。总产量与公顷数的比是(),比值是(),这个比值表示()。
3.素材三: 舞蹈表演中的”比”.(1)师介绍:芭蕾舞演员踮起脚跳舞舞姿才美,为什么这样就美了呢?其中的道理就跟我们今天学习的比有关。出示两组比:
未踮脚: 90:160=90÷160≈0.56踮 脚后: 105:175=105÷175=0.6
(2)了解:踮脚后的比值非常接近0.618,人们研究发现,当一个比的比值为0.618时,这个比就称为黄金比。所以,芭蕾舞演员踮起脚跳舞是在创造黄金比的美呢!
4.素材四:人体中的”比”
五、总结提升、深化”比”
1.质疑:既然比、除法和分数都表示相除关系,人们为什么还要创造比呢?
2.举例体会
(1)出示到冬冬和朋友们吹泡泡的场景。
介绍:吹泡泡是大家喜爱玩的游戏,制作泡泡水要用甘油、水、洗洁液、洗手液混合而成。这四样东西怎样搭配才能配制出好的泡泡水呢?”甘油、水、洗洁液、洗手液”的下方出示1:4:2:2.这个比,你能看明白吗?
(2)生发表看法,用1份的甘油,4份的水,2份的洗洁液,2份的洗手液配制。
(3)对比:用除法和分数能一下子将四种物品之间的倍数关系表示出来吗?
(4)明确:多个数量之间的关系组成连比,不仅很明确两两之间的倍数关系,而且几个数量之间的关系都一目了然。
3.小结:小小的一个”比”,看来还蕴藏丰富的内容!
以上教学设计,是基于课标理念下,对比不同版本的教材后进行的教学设计,对”情境”进行了更换,对教材的”序”进行了调整,目标是指向更适合学情的教学。教学目标
1.使学生认识圆的周长,初步理解圆周率的意义。
2.通过对圆周率π值的探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。
3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。教学重点和难点
推导圆周长的计算公式。理解圆周率的意义。教学过程设计(一)复习准备
上节课我们认识了圆,现在大家都说说,你们都知道关于圆的哪些知识?(二)学习新课
我们这节课就来研究圆的周长。(板书:圆的周长)我想问问同学,你们都带了哪些圆形实物? 两人互相指指圆的周长在哪儿?
谁愿意到前面来指一指老师手里这个圆的周长。谁跟他指得不一佯?为什么这样指不行? 老师这有一面镜子,我要给这面镜子镶一条不锈钢边框,怎么才能知道这个边框长多少厘米呢?
老师这还有一个杯子,用它喝水有时烫手,我想编一个杯子套,怎么才能知道套口应该编多大?
哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。
请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。
(学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)请小组代表汇报本组的实验过程和实验结果。
同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。(板书:绕、滚)(师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。
想一想,以前我们学过哪些几何图形的周长? 长方形的周长和谁有关系?有什么关系? 正方形的周长和谁有关系?有什么关系?
圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。
(用电脑演示三个滚动的圆,看出圆越大滚动的轨迹越长,圆越小滚动的轨迹越短。)我们得出了圆的周长和直径有关系。(板书:圆的周长 直径)这是我们大家一起发现的。科学家往往发现问题就要去研究,我们同学长大想不想当科学家?今天我们就先学着科学家来研究一个问题:用我们测量的数据,通过计算分析,来研究圆的周长到底和直径有什么关系?你发现了什么规律?(学生分小组讨论。)通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)是不是这样呢?我们来验证一下。
(电脑演示:圆的周长是直径的3倍多一些。)
这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)谁能说说圆周率是怎么得来的? 请同学们看书上是怎么说的?
早在2000年前,我国古代数学经典《周髀算经》就指出:“圆经一而周三”,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。(出现祖冲之的画像,同时放配乐录音,介绍祖冲之。)约1500年前,我国伟大的数学家和天文学家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲的数学家要早1000年左右。现在世界上最大的环形山,就是以祖冲之的名字命名的。我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母π代表圆周率。(板书:π)
圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将π取两位小数。(板书:π≈3.14)
既然π是个固定的值了,只要知道什么就能求圆的周长?(直径。)现在我们能不能计算黑板上这个圆的周长? 什么条件不知道?(直径。)谁来测直径,用“分米”作单位。(板书:分米)如果直径是2分米,半径就是几分米? 用半径能不能求圆周长?
现在我们试着用直径或半径来求黑板上圆的周长。谁用直径求出圆的周长?(板书:3.14×2=6.28(分米))为什么这样列式?
(板书:圆的周长=直径×圆周率)如果用C表示圆的周长,d表示直径,π表示圆周率,字母公式怎么表示?(板书:C=πd)
谁能用半径求圆的周长?为什么这样做? 如果用字母r表示半径,字母公式怎么表示?(板书:C=2πr)(三)巩固反馈
1.求出下面各圆的周长。(单位:厘米)
2.判断,你认为正确画“√”,错误画“×”。
(1)一个圆的周长总是它的直径的π倍。
()(2)圆的周长是6.28厘米,它的半径是2厘米。
()(3)圆周长的一半与半个圆的周长相等。
()3.选择:你认为哪个答案正确就举几号卡片。
(1)车轮滚动一周,所行路程是求车轮的[
] ①半径 ②直径 ③周长
(2)圆形水池的直径是4米,绕池一周长
[
] ①25.12米 ②12.56米 ③12.56平方米
(3)A圆的直径是6厘米,B圆的直径是2分米,圆周率
[
] ①A圆大 ②B圆大 ③一样大
4.甲乙两人分别沿①、②两条路线从一端走到另一端,谁走的路线长?(四)总结全课
这节课你学会了什么?(引导学生总结本课所学的知识。)课堂教学设计说明
本节课通过引导学生对圆周率的探求,推导出圆周长的计算公式。第一步先通过测量实物中圆的周长,研究测量圆周长的方法是通过“绕、滚”的方法来测量。接着出现画在小黑板上的圆,当学生发现测这个圆的周长不能用“绕、滚”的方法来测量,必须研究一种求圆周长的方法。第二步,推导计算圆周长的公式。先带领学生回忆:我们以前学过哪些几何图形周长的计算?长方形和正方形的周长和谁有关系?引导学生发现圆周长和谁有关系。第三步,研究圆的周长和直径有什么关系,理解圆周率的意义,推导出圆周长的计算公式。通过对圆周率π值的探求,培养学生科学的、实事求是的探索精神和概括能力及逻辑思维能力。板书设计
教学目标:
1、使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。
2、使学生会用方程表示简单情境中的等量关系,培养学生的动手操作能力、观察能力、分析能力和解决实际问题的能力。
教学重点:方程的意义。
教学难点:正确区分等式和方程这组概念。
教学准备:简易天平、法码、水笔、橡皮泥、纸条、白纸、磁铁。
教学过程:
一、课前谈话:
同学们,你们平时喜欢干什么?你们喜欢玩吗?喜欢的请举手?
这么多人喜欢玩,老师想问这么多同学中有人玩过玩过跷跷板吗?玩过的请举手,谁来说说玩跷跷板时是怎样的情景?(学生自由回答)
当两边的距离相等,重的一边会把轻的一边跷起来,两边的重量相等,跷跷板就平衡。
二、新授
1、玩一玩
利用这种现象,科学家们设计出了天平,老师也自己做了一个简易的天平。我们用它来玩一个类似于跷跷板的游戏。好不好?
谁想上来玩?
请你在左边放一个20克的法码,右边放一个50克的法码,这时天平怎么样?(右边的把左边的跷起来了),在左边再放一个20克的法码,这时天平怎么样?(右边的把左边的跷起来了,说明右边的重量比左边的重),你能用一个数学式子来表示这时候的现象吗?(用水笔板书:20+20<50)
再在左边放一个10克的法码,这时天平怎么样?(平衡了)
你能也用一个式子来表示这时候的现象吗?(板书:20×20+10=50。学生说加法,则说两个20相加还可用[用水笔板书:]
看来我们还可以用式子来表示天平的平衡情况,你们想不想亲自来玩一玩?
老师为你们每一个学习小组也准备了一架简易天平,还有一些法码,以及两块橡皮泥,大家可以利用这些工具,或者利用你们身边一些比较轻的物体,如橡皮、小刀等,来玩一玩,然后把你们玩的时候看到的现象用式子表示出来,好不好?
给你们5分钟的时间,比一比哪个小组又快又好。
哪个小组把自己所写的式子拿上来展示出来。
(有不一样的都可以拿上来)
2、分类
你们对这些式子满意吗?
大家写出了这么多的式子,你能把这些式子按照一个统一的标准分类吗?小组讨论怎么分?按照什么样的标准分?
谁来说说你们是按照什么标准分的?
1、如果学生中有“是否含有未知数”(板书:含有未知数)“是否是等式”(板书:等式)这两类的指名上黑板分,其余的口头交流。
2、把学生写的式子分成两堆,让学生分]
师:按照不同的标准,有不同的结果。这一种分法,我们得到的这几个式子是什么式子?这一种分法,师:你能把这一种再分成两类吗?怎么分?指名板演。
你们发现了这一类式子有什么特点?(揭示:含有未知数的等式)
象这样,含有未知数的等式我们把它叫做方程。这也是我们今天这堂课要学习的内容。出示课题。
3、理解概念
练习:你能举一个方程的例子吗?学生在本子上写一个。
回忆一下,我们以前见过方程吗,在哪见过?(学生展示交流)
4、巩固概念
老师这儿也有几个式子,它们是方程吗?(用手势表示,随机让学生说说为什么)
通过这几道题的练习,你对方程有了哪些新的认识?
(1)未知数不一定用X表示。
(2)未知数不一定只有一个。
一个方程,必须具备哪些条件?
5、比较辨析
师:含有未知数的等式叫方程,那么方程和等式有什么关系呢?
如果老师说,方程一定是等式。对吗?(结合板书交流)
等式也一定是方程。(结合板书交流)
也就是说:方程一定是(等式),但等式[不一定是(方程)]。
你能用自己的方式来表示方等式和方程之间的关系吗?
例如画图或者别的方式,小组合作,试一试。(用水笔画在白纸上,字要写得大些)
三、巩固
师:同学们的图非常形象地表示出了方程和等式之间的关系,1、这些图你能用方程来表示吗?
2、看来同学们对今天学的知识掌握得不错,用方程还可以表示生活中的一些数量之间的关系?
如:我班一共有多少人,男生有多少人?如果把女生的人数看成X,你会用方程来表示男女生人数与全班人数之间的关系吗?
师:这里还有一些有关我们学校的信息,谁来读一读。
3、新的谢桥中心小学,是苏州市内占地面积最大的小学之一。建筑面积约25000平方米,3幢教学楼的建筑面积一共约为19500平方米,平均每幢为c平方米,其它建筑面积为m平方米。你能选择其中一些信息列出方程来吗?(同桌交流)
四、小结
学了这堂课你有什么想说的吗?你有什么想对老师说的吗?
课题
百分数的意义和读写法 课型
本课题教时数: 本教时为第 1 教时 备课日期 11 月 10日 教学目标
1、使学生初步认识掌握百分数的应用,理解百分数的意义,了解百分数和分数在意义上的不同点;能说出一个数是另一个数的百分之几,学会写百分数。
2、通过教学,培养学生合作交流的能力,和抽象、概括等思维能力 教学重难点
百分数的意义;百分数和分数的区别。
教学准备 课件、纸片 教学过程设计 教学内容 师生活动
一、导入新课。
二、教学新课。
三、实际应用
四、总结
“猜猜哪杯糖水甜?”
1、出示2杯糖水:1号杯——水30克,其中糖5克,2号杯——水20克,其中糖4克。小组讨论,说说你是怎样判断的。学生交流。
小结:根据糖和糖水的关系或糖和水的关系,才能判断出谁甜。
2、依据糖和糖水的关系,判断小组上表格中的3杯糖水谁最甜?小组分工合作完成。
学生交流,说说你是怎么比较的?
1、百分数的意义。
如果要想比较这一共的糖水谁最甜,该怎么办?
指出:在实际生产、生活、工作中,为了便于统计和比较,通常把这样的分数用分母是100的分数来表示。
把表格中的分数改写成分母是100的分数。说说这些分数的意义。揭示出百分数的意义。
2、百分数的读写法。
自学书上的有关内容。
把表格中的百分之几改写成百分数的形式,并说说意义。练习:练习十九 4 练一练 1看到这些图形,你想到了什么数? 举例:说说准备资料中的百分数的意义。折出百分数。
3、百分数和分数的比较。下面的说法你认为对吗?
(1)“六年级男生人数是全年级总人数的57/100”,可以说成“六年级男生人数是全年级总人数的57%”。
(2)“学校十月份用纸13/100吨”,可以说成“学校十月份用纸13%吨”。小结:百分数和分数的不同。
根据提供的信息说说百分数的意思,及从信息中你想到了什么。说说自己的收获。
第6篇:认识比_教案教学设计
认识比
六年级数学科目集体备课教案课题:认识比
本课初备
课时
共7课时,本课第1课时
个人复备栏
教学目标:1.理解比的意义,学会比的读、写法,掌握比的各部分名称及求比值的方法。2.弄清比同除法、分数的关系。3.使学生在解决简单实际问题过程中,感受比与日常生活密切联系,增强自主探索与合作交流意识,提高学好数学的自信心。重点难点:1.理解比的意义、读法和写法,求比值的方法。2.求比值的方法。课前准备:多媒体课件。教学过程:一、复习导入(一)出示例1的实物图1.提问:如果将果汁的杯数与牛奶的杯数进行比较,结果怎样?怎样列式?根据学生的回答,教师多媒体课件出示:牛奶比果汁多1杯果汁比牛奶少1杯提问:你是什么方法算出来的?(减法)师:用减法算出牛奶和果汁之间相差1杯,那么牛奶和果汁之间的关系就是相差关系。板书:相差关系。2.提问:你还可以用什么方法来表示牛奶和果汁之间的关系?根据学生的回答,教师多媒体课件出示:果汁的杯数相当于牛奶的2/3牛奶的杯数相当于果汁的3/2提问:你是什么方法算出来的?(除法)师:用除法算出牛奶是果汁的几分之几或是果汁是牛奶的几分之几,那么牛奶和果汁之间的关系就是倍数关系。板书:倍数关系。3.小结:两个数量相比较,既可以用减法比较两个数量之间相差多少,也可以用除法来表示两者之间的倍数关系。4.师:其实,当用
除法表示两个数量的关系时,还有另一种说法,想学吗?这就是我们今天所要认识的新朋友—比。板书课题:认识比。二、新授(一)自学认识比。1.师:打开书本68页,看看牛奶和果汁的关系还可以怎样说?学生自学完后回答,教师多媒体课件出示:果汁与牛奶杯数的比是2比3牛奶与果汁杯数的比是3比2师:2比3会写吗?3比2呢?2.教学比的各部分名称学生板书:2:33:2提问:在2:3这个比中2叫做什么?3呢?中间两个小圆点叫做什么?学生回答教师板书。提问:那么3:2中3叫做什么?2呢?(1)同学们看一看,刚才的比的前项是2,这儿的2怎么又是比的后项了呢?(2)对!颠倒两个数量的位置,就会得出另一个比,它的意义也就不同。因此大家在叙述的时候,一定要说清楚是哪个数量与哪个数量的比是几比几,不可颠倒顺序。(二)巩固练习。多媒体课件出示(三)出示“试一试”一种洗洁液,加进不同数量的水后,可以清洗不同的物品。下图表示在配制不同浓度的溶液时洗洁液与水的比。(蓝色部分表示洗洁液,白色部分表示加进的水)1.如果溶液里的洗洁液看作1份,那么水分别可以看作几份?溶液看作几份?2.水和洗洁液的比可以怎样表示?洗洁液和溶液的比呢?根据学生的回答,教师出示多媒体。(四)教学例2。1.出示例2。提问:知道了小军和小伟的路程和时间,怎样求他们的速度?学生回答:速度=路程÷时间。2.根据这两个信息能像例题1那样提出用减法计算的问题吗?能提出是的几分之几这样的问题吗?为什么?引导学生理解刚才是两个同类量在比较,现在是两个不同类量在比较,两个不同类的量进行比较,可得到一个新的数量,在这里:路程÷时间=速度。3.说明:在这里速度表示的是路程与时间的关系。而这种关系也可用比来表示。谁会说?(学生口答,教师出示:小军走的路程与时间的比是比是900∶15。小伟走的路程与时间的比是比是900∶20)4.理解比的意义两个数量相除,既可以用倍数或分数来表示,也可用比来表示。所以两个数的比可以表示什么?(板书完整:两个数的比表示两个数相除)5.认识比值(1)在900∶15这个比中,比的前项是几?后项是几?我们把比的前项除以后项所得的商叫做比值。那么这个比的比值是多少?那么900∶20这个比的比值是多少?(2)你能说出例1中的各个比的比值分别是多少吗?观察这些比值,我们发现比值可以是整数、也可以是分数,还可以是小数。所以比值是一个数。6.教学例2下面的“试一试”。(1)出示3:5=÷=(——)思考:比的前项相当于除法中的什么?分数中的什么?比的后项相当于除法中的什么?分数中的什么?比号相当于除法中的什么?分数中的什么?比值呢?学生交流后完成板书:除法被除数÷除数商分数分子—分母分数线(2)区别意义比表示两个数的关系,除法是一种运算,分数是一种数。比是表示所比较的两个数的关系,如2:3也可以写成2/3,仍读作“2比3”。讨论:比的后项可以是0吗?为什么?指出:因为比的后项相当于除法的除数,而除数不能为0,所以比的后项不能为0。7.完成练一练。(1)完成第1题。独立完成。结合题意说出每个比及比值的含义。(2)完成第2题。独立完成,说说比的含义。(3)完成第3题。独立完成填写。汇报交流。三、巩固练习。完成练习十三的1—5题。四、课堂小结。今天我们一起认识了一个新朋友—比,你知道些关于它的哪些知识?板书设计:练习设计:完成《教案与作业设计》151页教后记:
参加备课人员
六年级数学科目集体备课教案
课题认识比补充练习:
本课初备
课时
共7课时,本课第4课时
个人复备栏
教学目标:1、进一步理解比的意义。2、使学生进一步理解和掌握比的基本性质,提高化简比的技能。重点难点:进一步理解比的意义和比的基本性质。理解比的意义,提高化简比的技能。课前准备:投影片教学过程:一、回顾整理提问:前几节课我们主要学习了什么?结合学生回答,回顾本单元学习内容:1、比的意义;2、比各部分名称;3、求比值的方法;4、比的基本性质;5、化简比二、巩固提高1、化简比。5/12:35/2448∶120.32:4/585∶51578∶3401/6:2/52、求比值。169:390.4:1/104/5:11/252.8:0.83/4:6/75:1/4从中引导学生发现:求比值的方法有时候也可以用来化简比,化简比的结果有的时候可以用来求比值;但是化简比的结果可以用比的形式表示或者用分数的形式的表示,是一个比,而求比值的结果可以是一个整数或分数或小数,是一个数。3、选择(1)大、小两个正方体的棱长比是2:1,它们的表面积比是,体积比是。a2:1b4:1c6:1d8:1(2)在2:3中,如果前项扩大4倍,要使比值不变后项应加上a4b6c9d12(3)一个比是7:25,如果比的前项增加14,要使
比值不变,后项应a增加14b增加50c扩大2倍(4)甲与乙的比是5:8,则乙是甲的a5/8b8/5c5/13d13/84、某班男生25人,女生20人。师:根据题意你可以提出与比有关的问题吗?并由其他学生解答。生1:男生与女生人数比是几比几??生2:女生与男生人数的比是几比几?生3:男生与全班人数的比是几比几?提醒学生注意化成最简整数比。5、a÷b=0.4师:根据题意你可以提出与比有关的问题吗?并由其他学生解答。生1:a与b的比是几比几?比值是多少?生2:b与a的比是几比几?比值是多少?6、在100克水中放入5克盐。师:根据题意你可以提出与比有关的问题吗?并由其他学生解答。生1:盐与水的比是几比几?生2:盐与盐水的比是几比几?生3:水与盐水的比是几比几?7、某班男、女生人数比是5:4。师:根据题意你可以提出与比有关的问题吗?并由其他学生解答。师:你还能提出其他问题吗?引导学生提出分数问题?(谁是谁的几分之几?)8、一项工作,甲队独做20天完成,乙队独做30天完成,甲、乙两队完成这项工作的时间比是:,甲、乙两队的工作效率比是:。师:这里的工作效率该怎样求?生:把工作总量看作单位1,甲、乙的工作效率分别就是1/20、1/30。你还发现了什么?(工作时间与工作效率的比正好相反。)三、拓展提升练习十三思考题:1、1/4是与面积的比2、重叠部分有几份?小长方形的面积有这样的几份?3、1/6是与面积的比4、重叠部分有几份?大长方形的面积有这样的几份?5、那么小长方形与大长方形面积的比是多少?板书设计:练习设计:教后记:
参加备课人员
感谢您的阅读,本文如对您有帮助,可下载编辑,谢谢
《认识比》教学设计平桥小学潘红星 教学目标:1.理解比的意义,知道比是表示两个数之间的一种关系。 2.会读比、写比、知道比的各个部分名称。 3.渗透“变与不变”的函数思想。......
刀豆文库小编为你整合推荐8篇认识比教学设计,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
《认识比》教学设计 吴圩小学 谢宗宇教学内容:苏教版六年级上册第五单元第1课时。教学目的:1、使学生在具体情境中理解比的意义,掌握比的读、写法,知道比的各部分名称,会求比值。......
认识比教学设计((共17篇))由网友“住在橘子岛”投稿提供,下面是小编给大家整理后的认识比教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。篇1:“认识比”教学设计 教学设计说明:1......
认识比教学设计作为一位杰出的教职工,就有可能用到教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。一份好的教学设计是什么样子的呢?以下是小编为大家整理的认......
