二次函数测试题的整理
第1篇:二次函数测试题的
二次函数测试题的(锦集10篇)由网友“猫小姐2”投稿提供,下面小编为大家整理过的二次函数测试题的,欢迎阅读与借鉴!
篇1:二次函数测试题的
二次函数测试题的整理
一、填空题:
1、函数是抛物线,则=。
2、抛物线与轴交点为,与轴交点为。
3、二次函数的图象过点(-1,2),则它的解析式是,当时,随的增大而增大。
4、二次函数的图象如下左图所示,则对称轴是,当函数值时,对应的取值范围是。
y
xA
-3o1
B
5、已知二次函数与一次函数的'图象相交于点A(-2,4)和B(8,2),如上右图所示,则能使成立的的取值范围是。
二、选择题:
6、函数的图象经过点
A、(-1,1)B、(1,1)C、(0,1)D、(1,0)
7、抛物线向右平移1个单位,再向下平移2个单位,所得到的抛物线是
A、B、
C、D、
8、已知关于的函数关系式(为正常数,为时间)如图,则函数图象为
hhhh
o
ottotot
ABCD
9、下列四个函数中:
A、B、C、D、
图象经过坐标原点的函数是
图象的顶点在X轴上的函数是
图象的顶点在Y轴上的函数是
10、已知二次函数,如图所示,若,,那么它的图象大致是
yyyy
xxxx
ABCD
三、解答题:
11、根据所给条件求抛物线的解析式:
(1)、抛物线过点(0,2)、(1,1)、(3,5)
(2)、抛物线的顶点为(-1,2),且过点(2,1)
(3)、抛物线关于轴对称,且过点(1,-2)和(-2,0)
12、先配方,再指出下列函数图象的开口方向、顶点和对称轴:
(1)、(2)、
四、应用题:
13、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为米,面积为S平方米。
(1)求出S与之间的函数关系式,并确定自变量的取值范围;
(2)请你设计一个方案,使获得的设计费最多,并求出这个费用。
14、如图,有一座抛物线形的拱桥,桥下的正常水位为OA,此时水面宽为
40米,水面离桥的最大高度为16米,试求拱桥所在的抛物线的解析式。
OA
15、已知P(,)是抛物线上在第一象限内的一个点,点A的坐标是(3,0)。
(1)、令S是△OPA的面积,求S与的函数关系式以及S与的函数关系式;
(2)、当S=6时,求点P的坐标;
(3)、在抛物线上求一点P,,使△OP,A是以OA为底的等腰三角形。
篇2:初中数学二次函数测试题
初中数学二次函数测试题
一、填空题(每空3分,共42分)
1.已知函数y=(k2-k)x2+kx+1,当k满足 时,y是以x为自变量的一次函数;当k满足 时,y是以x为自变量的二次函数。
2.已知函数y=ax2的图象经过点P(3,-9),则此函数的解析式是它的开口方向是 ,它有最 值。当x0时,y随x的增大而 。
3.抛物线y=3-2x-x2的开口 ,顶点坐标是 ,对称轴是 ,它与x轴的交点坐标是 ,它与y轴的交点坐标是 。
4.二次函数y=mx2-3x+2m-m2的图象经过原点,则m 。
5.把函数y=3x2的图象向左平移2个单位,得到函数y= 的图象;再向下平移4个单位得到函数y= 的图象。
二、选择题(每小题4分,共28分)
6.抛物线y=-x2-2x+3的顶点坐标是( )
A.(1,4) B.(1,-4) C.(-1,4) D.(-1,-4)
7.如果二次函数y=x2-10x+c的顶点在x轴上,那么c的值为( )
A.0 B.10 C.25 D.-25
8.1月份的产量为a,月平均增长率为x,第一季度产量y与x的函数关系是( )
A.y=a(1+x)2 B.y=a(1+x)+a(1+x)2 C.a+(1+x)2 D.y=a(2+x)+a(1+x)2
9.二次函数y=-2(x+1)2+2的大致图象是( )
A B C D
10.已知函数 ,当函数值随x的增大而减小时,则x 的取值范围是( )
A.x B.x C.x D.-2
11.a0,则在同一平面直角坐标系内,一次函数y=a(x-1)和二次函数y=a(x2-1)的`图象只可能是图中的( )
A B C D
12.二次函数y=x2+ax+b中。若a+b=0 ,则它的图象必经过点( )
A.(-1,1) B.(1,-1) C.(1,1) D.(-1,-1)
三、解答题(每小题15分,共30分)
13.已知二次函数
(1)把已知函数化成 的形式;
(2)指出图象的对称轴和顶点坐标;
(3)画出函数的图象.
14.已知雅美服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号的时装需用A种布料0.6m,B种布料0.9m,可获利润45元;做一套N型号的时装需用A种布料1.6m,B种布料0.4m,可获利润50元;若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.
(1)求y(元)与x(套)的函数关系式,并求出自变量x的取值范围;
(2)雅美服装厂在生产这批时装中,当N型号的时装为多少套时,所获得的利润最大?最大利润是多少?
篇3:二次函数说课稿
1.说教材
本节内容是人民教育出版社出版的九年级《数学》下第26章第一节第二课时的内容。在此之前,学生已学习了二次函数的概念,对于函数的积累知识有一次函数和反比例函数。本节内容是对二次函数图像及其性质的学习,是后续研究二次函数图像的变换的基础。二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。
本节课中的教学重点利用描点法画出二次函数的图像,建构符合学生认知结构的知识体系,教学难点是运用数形结合的思想描述函数,根据解析式判断函数的开口方向、对称轴、顶点坐标。基于以上对教材的认识,根据数学课程标准,考虑到学生已有的认知结构与心理特征,制定如下的教学目标。
2.说目标
【知识与能力】:
理解二次函数的意义。
会用描点法画出函数y = ax2的图象。
知道抛物线的有关概念
会根据公式确定抛物线的顶点坐标、开口方向、对称轴以及抛物线与坐标轴的交点坐标。
【过程与方法】:
1、通过二次函数的教学进一步体会研究函数的一般方法,加深对于数形结合思想的认识。
2.综合运用所学知识、方法去解决数学问题,培养学生提出、分析、解决、归纳问题的数学能力,改善学生的数学思维品质。
【情感与态度目标】:
在数学教学中渗透美的教育,让学生感受二次函数图像的对2
称之美,激发学生的学习兴趣。认识到数学源于生活,用于生活的辩证观点。
3.说教学方法
教法选择与教学手段:基于本节课的特点是学习新知及其综合运用,应着重采用复习与总结的教学方法与手段,先从一次函数、反比例函数的图像复习入手,通过提问思考、归纳总结、综合运用等形式对二次函数图像及其性质进行有针对性的、系统性的教学。教学的模式为学生思考,讨论,教师分析,演示、师生共同总结归纳。
利用白板的动态画板功能,画出不同的二次函数图像,进行分析比较和归纳。
学法指导:让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。
最后,我来具体谈一谈本节课的教学过程。
4.说教学过程
(一)为对二次函数图像及其性质的相关知识进行重构做准备。通过回忆复习一次函数和反比例函数图像及其性质等相关知识引入新课。利用描点法画出二次函数的图象,总结规律,会根据公式确定抛物线的顶点坐标、开口方向、对称轴。说出a为何值时y随x增大而增大(增大而减小),引导学生掌握用描点法画出二次函数的图象,能从图象上认识二次函数的性质。运用联想、概括方法对二次函数图像及其性质的相关知识进行梳理,领悟数形结合的思想方法,发展学生的化归迁移的数学思维,培养学生的转化能力。
(二)通过对二次函数图像及其性质的学习,采用学生思考,教师分析,解题小结三个环节构成的练习题讲解模式,巩固二次函数图像及其性质的基本题目的一般解题方法,并进一步研究二次函数图像及其性质的应用。
(三)反思概括,方法总结
总结本节课的知识点、重点和难点,着重理解二次函数图像及其性质的相关知识和基本解题方法,领悟数形结合的数学思想方法,学会用化归思想,解决实际问题。培养学生由题及法,由法及类的数学总结归纳方法。
(四)作业
课后通过练习来巩固本节课所复习的知识点、重点和难点,强化教学目标。
各位老师,以上所说只是我预设的一种方案,但课堂上是千变万化的,会随着学生和教师的灵性发挥而随机生成的,预设效果如何,最终还有待于课堂教学实践的检验。本说课一定存在诸多不足,恳请各位老师提出宝贵意见,谢谢!
篇4:二次函数说课稿
一、说课内容:
苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题
二、教材分析:
1、教材的地位和作用
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力。
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心。
3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程
2、从学生活动出发,通过以旧引新,顺势教学过程
3、利用探索、研究手段,通过思维深入,领悟教学过程
四、教学过程:
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)
2.它们的形式是怎样的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?
【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k≠0的条件,以备与二次函数中的a进行比较。
(二)引入新课
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)
例1、(1)圆的半径是r(px)时,面积s (px?)与半径之间的关系是什么?
解:s=πr?(r>0)
例2、用周长为20m的篱笆围成矩形场地,场地面积y(m?)与矩形一边长x(m)之间的关系是什么?
解: y=x(20/2-x)=x(10-x)=-x?+10x (0
例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。
(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1、强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)
3、为什么二次函数定义中要求a≠0 ?
若a=0,ax2+bx+c就不是关于x的二次多项式了)
4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零。
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。
【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)?+1 (2)s=3-2t? (3)y=(x+3)?- x?
(4) s=10πr? (5) y=2?+2x
【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。
(四)巩固练习
1.已知一个直角三角形的两条直角边长的和是10px.
(1)当它的一条直角边的长为4.5px时,求这个直角三角形的面积;
(2)设这个直角三角形的面积为Spx2,其中一条直角边为xpx,求S关
于x的函数关系式。
【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。
2.已知正方体的棱长为xpx,它的`表面积为Spx2,体积为Vpx3.
(1)分别写出S与x,V与x之间的函数关系式子;
(2)这两个函数中,那个是x的二次函数?
【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。
3.设圆柱的高为h(px)是常量,底面半径为rpx,底面周长为Cpx,圆柱的体积为Vpx3
(1)分别写出C关于r;V关于r的函数关系式;
(2)两个函数中,都是二次函数吗?
【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。
4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。
【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”.
(五)拓展延伸
1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式。
【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。
(六) 小结思考:
本节课你有哪些收获?还有什么不清楚的地方?
【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。
(七) 作业布置:
必做题:
1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?
2. 在长20px,宽15px的矩形木板的四角上各锯掉一个边长为xpx的正方形,写出余下木板的面积y(px2)与正方形边长x(px)之间的函数关系,并注明自变量的取值范围。
选做题:
1.已知函数 是二次函数,求m的值。
2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象
【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。
五、教学设计思考
以实现教学目标为前提
以现代教育理论为依据
以现代信息技术为手段
贯穿一个原则――以学生为主体的原则
突出一个特色――充分鼓励表扬的特色
篇5:二次函数数学教案
教学目标
(一)教学知识点
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
(二)能力训练要求
1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.
3.通过学生共同观察和讨论,培养大家的合作交流意识.
(三)情感与价值观要求
1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.具有初步的创新精神和实践能力.
教学重点
1.体会方程与函数之间的联系.
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
教学难点
1.探索方程与函数之间的联系的过程.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.
教学方法
讨论探索法.
教具准备
投影片二张
第一张:(记作§2.8.1A)
第二张:(记作§2.8.1B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.
篇6:二次函数数学教案
在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。
一、 重视每一堂复习课 数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。
二、 重视每一个学生 学生是课堂的主体,离开学生谈课堂效率肯定是行不通的。而我校的学生数学基础大多不太好,上课的积极性普遍不高,对学习的热情也不是很高,这些都是十分现实的事情,既然现状无法更改,那么我们只能去适应它,这就对我们老师提出了更高的要求
三、做好课外与学生的沟通,学生对你教学理念认同和教学常规配合与否,功夫往往在课外,只有在课外与学生多进行交流和沟通,和学生建立起比较深厚的师生情谊,那么最顽皮的学生也能在他喜欢的老师的课堂上听进一点
四、要多了解学生。你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。
篇7:二次函数练习题
二次函数练习题
一、选择题:
1 下列关系式中,属于二次函数的是(x为自变量)( )
2 函数y=x2-2x+3的图象的顶点坐标是( )
A (1,-4) B(-1,2) C (1,2) D(0,3)
23 抛物线y=2(x-3)的顶点在( )
A 第一象限 B 第二象限 C x轴上 D y轴上
4 抛物线的对称轴是( )
A x=-2 Bx=2 C x=-4 D x=4
5 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( )
A ab>0,c>0 B ab>0,c<0
C ab<0,c>0 D ab<0,c<0
6 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( )
A 一 B 二 C 三 D 四
7 如图所示,已知二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,图象交 x 轴于点A(m,0) 和点B ,且m>4,那么AB 的长是( )
A 4+m B m C 2m-8 D 8-2m
8 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是( )
9 已知抛物线和直线
在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x1,y 1) ,P 2(x2,y 2) 是抛物线上的点,P 3(x3,y 3) 是直线上的点,且-1A y1
10 把抛物线物线的函数关系式是( ) A
C 的图象向左平移2个单位,再向上平移3个单位,所得的抛 B D
二、填空题:
11 二次函数y=x2-2x+1的对称轴方程是______________
12 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________
13 若抛物线y=x2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________
14 抛物线y=x2+bx+c,经过A(-1,0) ,B(3,0) 两点,则这条抛物线的解析式为_____________
15 已知二次函数y=ax2+bx+c的图象交x 轴于A 、B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________
16 在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g 是常数,通常取10m/s2) 若v 0=10m/s,则该物体在运动过程中最高点距地面_________m
17 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3) 的抛物线的解析式为______________
18 已知抛物线y=x2+x+b2经过点,则y 1的值是_________
三、解答题:
19 若二次函数的图象的对称轴方程是,并且图象过A(0,-4) 和B(4,0) ,(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标; (2)求此二次函数的解析式;
20 在直角坐标平面内,点 O 为坐标原点,二次函数 y=x2+(k-5)x-(k+4) 的图象交 x 轴于点A(x1,0) 、B(x2,0) ,且(x1+1)(x2+1)=-8 (1)求二次函数解析式;
(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△POC 的面积
21 已知:如图,二次函数y=ax2+bx+c的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0) ,点C(0,5) ,另抛物线经过点(1,8) ,M 为它的顶点
(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB
22 某商店销售一种商品,每件的进价为250元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是1350元时,销售量为500件,而单价每降低1元,就可以多售出200件 请你分析,销售单价多少时,可以获利最大
答案与解析:
一、选择题
1 考点:二次函数概念 选A
2 考点:求二次函数的顶点坐标
解析:法一,直接用二次函数顶点坐标公式求 法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k) ,y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2) ,答案选C
3 考点:二次函数的图象特点,顶点坐标
解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0) ,所以顶点在x 轴上,答案选C
4 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为 解析:抛物线,直接利用公式,其对称轴所在直线为答案选B
5 考点:二次函数的`图象特征
解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方, 答案选C
6 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征 解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,在第四象限,答案选D
7 考点:二次函数的图象特征
解析:因为二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,所以抛物线对称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称,因为点A(m,0) ,且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C
8 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状 解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y 轴左侧,交坐标轴于(0,0) 点 答案选C
9 考点:一次函数、二次函数概念图象及性质
解析:因为抛物线的对称轴为直线x=-1,且-1-1时,由图象知,y 随x 的增大而减小,所以y 2
10 考点:二次函数图象的变化 抛物线平移2个单位得到,再向上平移3个单位得到的图象向左 答案选C
二、填空题
11 考点:二次函数性质 解析:二次函数y=x2-2x+1,所以对称轴所在直线方程 答案x=1
12 考点:利用配方法变形二次函数解析式
解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2答案y=(x-1)2+2
13 考点:二次函数与一元二次方程关系
解析:二次函数y=x2-2x-3与x 轴交点A 、B 的横坐标为一元二次方程x 2-2x-3=0的两个根,求得x 1=-1,x 2=3,则AB=|x2-x 1|=4答案为4
14 考点:求二次函数解析式
解析:因为抛物线经过A(-1,0) ,B(3,0) 两点,解得b=-2,c=-3, 答案为y=x2-2x-3
15 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一 解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1
16 考点:二次函数的性质,求最大值
解析:直接代入公式,答案:7
17 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一 解析:如:y=x2-4x+3
18 考点:二次函数的概念性质,求值
三、解答题
19 考点:二次函数的概念、性质、图象,求解析式
解析:(1)A′(3,-4)
(2)由题设知:
∴y=x2-3x-4为所求
(3)
20 考点:二次函数的概念、性质、图象,求解析式
解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根
又∵(x1+1)(x2+1)=-8 ∴x 1x 2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5) ,P(2,-9)
21 解: (1)依题意:
(2)令y=0,得(x-5)(x+1)=0,x 1=5,x 2=-1 ∴B(5,0)
由,得M(2,9)
作ME ⊥y 轴于点E ,
则 可得S △MCB =15
22 思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:
总利润=单个商品的利润×销售量
要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大 因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(135-x)元了 单个的商品的利润是(135-x-25)
这时商品的销售量是(500+200x)
总利润可设为y 元
利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润
解:设销售单价为降价x 元
顶点坐标为(425,91125)
即当每件商品降价425元,即售价为135-425=925时,可取得最大利润91125元
篇8:二次函数知识点范本
提醒大家:上面的内容是二次函数知识点,请大家做好笔记了。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的`一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。
二次函数知识点2
1二次函数及其图像
二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2bxc(a不为0)。其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:
一般式
y=ax∧2;bxc(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a);
顶点式
y=a(xm)∧2k(a≠0,a、m、k为常数)或y=a(x-h)∧2k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;
交点式
y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线];
重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)
y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引导出交点式的系数a=y1/(x1_x2)(y1为截距)
求根公式
二次函数表达式的右边通常为二次三项式。
x是自变量,y是x的二次函数
x1,x2=[-b±(√(b^2-4ac))]/2a
(即一元二次方程求根公式)
求根的方法还有因式分解法和配方法
在平面直角坐标系中作出二次函数y=2x的平方的图像,
可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像
如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
注意:草图要有1本身图像,旁边注明函数。
2画出对称轴,并注明X=什么
3与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质
轴对称
1.抛物线是轴对称图形。对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
顶点
2.抛物线有一个顶点P,坐标为P(-b/2a,4ac-b^2;)/4a)
当-b/2a=0时,P在y轴上;当Δ=b^2;-4ac=0时,P在x轴上。
开口
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
决定对称轴位置的因素
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号
当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b 2a=“”>0,所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
决定抛物线与y轴交点的因素
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
抛物线与x轴交点个数
6.抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
当a>0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b/4a;在{x|x<-b/2a}上是减函数,在
{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2c(a≠0)
特殊值的形式
7.特殊值的形式
①当x=1时y=abc
②当x=-1时y=a-bc
③当x=2时y=4a2bc
④当x=-2时y=4a-2bc
二次函数的性质
8.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,
正无穷);②[t,正无穷)
奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。
周期性:无
解析式:
①y=ax^2bxc[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2k[顶点式]
此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;
③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)
对称轴X=(X1X2)/2当a>0且X≥(X1X2)/2时,Y随X的增大而增大,当a>0且X≤(X1X2)/2时Y随X
的增大而减小
此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连
用)。
交点式是Y=A(X-X1)(X-X2)知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1X2值。
26.2用函数观点看一元二次方程
1.如果抛物线与x轴有公共点,公共点的横坐标是,那么当时,函数的值是0,因此就是方程的一个根。
2.二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。
26.3实际问题与二次函数
在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。
二次函数知识点3
二次函数概念
一般地,把形如y=ax²+bx+c(其中a、b、c是常数,a≠0,b,c可以为0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。二次函数图像是轴对称图形。
注意:“变量”不同于“自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别,如同函数不等于函数的关系。
二次函数公式大全
篇9:二次函数知识点范本
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax²+bx+c(a,b,c为常数,a≠0)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax²;+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)²;+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b²;)/4a x1,x2=(-b±√b²;-4ac)/2a
III.二次函数的图象
在平面直角坐标系中作出二次函数y=x??的图象,
可以看出,二次函数的图象是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P [ -b/2a ,(4ac-b²;)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b²-4ac>0时,抛物线与x轴有2个交点。
Δ= b²-4ac=0时,抛物线与x轴有1个交点。
Δ= b²-4ac<0时,抛物线与x轴没有交点。
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax²;+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax²;+bx+c=0
此时,函数图象与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
篇10:二次函数课件
1. 能画二次函数的图象,并能够比较它们与二次函数的图象的异同,理解对二次函数图象的影响.
2. 能说出二次函数图象的开口方向、对称轴、顶点坐标、增减性、最值.
3. 经历探索二次函数的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验,体会数形结合思想在数学中的应用.
4. 通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.
(教学重点)
1.二次函数的图象和性质
2.二次函数与二次函数图象的关系。
(教学难点)
能够比较和的图象的异同,理解对二次函数图象的影响.
(板书设计)
课题
二次函数的图象与性质:
(教学过程)
Ⅰ.温故知新、引入新课:
第2篇:初中数学二次函数测试题
初中数学二次函数测试题
一、填空题(每空3分,共42分)
1.已知函数y=(k2-k)x2+kx+1,当k满足 时,y是以x为自变量的一次函数;当k满足 时,y是以x为自变量的二次函数。
2.已知函数y=ax2的图象经过点P(3,-9),则此函数的解析式是它的开口方向是 ,它有最 值。当x0时,y随x的增大而 。
3.抛物线y=3-2x-x2的开口 ,顶点坐标是 ,对称轴是 ,它与x轴的`交点坐标是 ,它与y轴的交点坐标是 。
4.二次函数y=mx2-3x+2m-m2的图象经过原点,则m 。
5.把函数y=3x2的图象向左平移2个单位,得到函数y= 的图象;再向下平移4个单位得到函数y= 的图象。
二、选择题(每小题4分,共28分)
6.抛物线y=-x2-2x+3的顶点坐标是( )
A.(1,4) B.(1,-4) C.(-1,4) D.(-1,-4)
7.如果二次函数y=x2-10x+c的顶点在x轴上,那么c的值为( )
A.0 B.10 C.25 D.-25
8.1月份的产量为a,月平均增长率为x,第一季度产量y与x的函数关系是( )
A.y=a(1+x)2 B.y=a(1+x)+a(1+x)2 C.a+(1+x)2 D.y=a(2+x)+a(1+x)2
9.二次函数y=-2(x+1)2+2的大致图象是( )
A B C D
10.已知函数 ,当函数值随x的增大而减小时,则x 的取值范围是( )
A.x B.x C.x D.-2
11.a0,则在同一平面直角坐标系内,一次函数y=a(x-1)和二次函数y=a(x2-1)的图象只可能是图中的( )
A B C D
12.二次函数y=x2+ax+b中。若a+b=0 ,则它的图象必经过点( )
A.(-1,1) B.(1,-1) C.(1,1) D.(-1,-1)
三、解答题(每小题15分,共30分)
13.已知二次函数
(1)把已知函数化成 的形式;
(2)指出图象的对称轴和顶点坐标;
(3)画出函数的图象.
14.已知雅美服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号的时装需用A种布料0.6m,B种布料0.9m,可获利润45元;做一套N型号的时装需用A种布料1.6m,B种布料0.4m,可获利润50元;若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元.
(1)求y(元)与x(套)的函数关系式,并求出自变量x的取值范围;
(2)雅美服装厂在生产这批时装中,当N型号的时装为多少套时,所获得的利润最大?最大利润是多少?
第3篇:二次函数测试题的整理
二次函数测试题的整理
一、填空题:
1、函数是抛物线,则=。
2、抛物线与轴交点为,与轴交点为。
3、二次函数的图象过点(-1,2),则它的解析式是,当时,随的增大而增大。
4、二次函数的图象如下左图所示,则对称轴是,当函数值时,对应的取值范围是。
y
xA
-3o1
B
5、已知二次函数与一次函数的'图象相交于点A(-2,4)和B(8,2),如上右图所示,则能使成立的的取值范围是。
二、选择题:
6、函数的图象经过点【】
A、(-1,1)B、(1,1)C、(0,1)D、(1,0)
7、抛物线向右平移1个单位,再向下平移2个单位,所得到的抛物线是【】
A、B、
C、D、
8、已知关于的函数关系式(为正常数,为时间)如图,则函数图象为【】
hhhh
o
ottotot
ABCD
9、下列四个函数中:
A、B、C、D、
图象经过坐标原点的函数是【】
图象的顶点在X轴上的函数是【】
图象的顶点在Y轴上的函数是【】
10、已知二次函数,如图所示,若,,那么它的图象大致是【】
yyyy
xxxx
ABCD
三、解答题:
11、根据所给条件求抛物线的解析式:
(1
第4篇:九年级数学上册二次函数测试题
九年级数学上册二次函数测试题
一、填空题(每空3分,共42分)
1.已知函数y=(k2-k)x2+kx+1,当k满足 时,y是以x为自变量的一次函数;当k满足 时,y是以x为自变量的二次函数。
2.已知函数y=ax2的图象经过点P(3,-9),则此函数的解析式是 ;它的开口方向是 ,它有最 值。当x>0时,y随x的增大而 。
3.抛物线y=3-2x-x2的开口 ,顶点坐标是 ,对称轴是 ,它与x轴的交点坐标是 ,它与y轴的交点坐标是 。
4.二次函数y=mx2-3x+2m-m2的图象经过原点,则m 。
5.把函数y=3x2的图象向左平移2个单位,得到函数y= 的图象;再向下平移4个单位得到函数y= 的图象。
二、选择题(每小题4分,共28分)
6.抛物线y=-x2-2x+3的顶点坐标是( )
A.(1,4) B.(1,-4) C.(-1,4) D.(-1,-4)
7.如果二次函数y=x2-10x+c的顶点在x轴上,那么c的值为( )
A.0 B.10 C.25 D.-25
8.1月份的产量为a,月平均增长率为x
第5篇:二次函数
配方法:用配方法解方程ax2+bx+c=0(a≠0)
先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+x=-
方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2
方程左边成为一个完全平方式:(x+)2=
当b2-4ac≥0时,x+ =±
∴x=(这就是求根公式)
例2.用配方法解方程 3x2-4x-2=0
解:将常数项移到方程右边 3x2-4x=2
将二次项系数化为1:x2-x=
方程两边都加上一次项系数一半的平方:x2-x+()2= +()2
配方:(x-)2=
第6篇:二次函数
2.二次函数定义__________________________________________________二次函数(1)导学案
一.教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。教学过程:
二、教学过程
(一)提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降价x元
