第5章大数定律和中心极限定理_第5章中心极限定理

2020-02-27 其他范文 下载本文

第5章大数定律和中心极限定理由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“第5章中心极限定理”。

第五章大数定律和中心极限定理总述

第17 次教案

§5.1大数定律

人们在长期的实践中发现,事件发生的频率具有稳定性,也就是说随着试验次数的增多,事件发生的频率将稳定与一个确定的常数。对某个随机变量X进行大量的重复观测,所得到的大批观测数据的算术平均值也具有稳定性,由于这类稳定性都是在对随机现象进行大量重复试验的条件下呈现出来的,因而反映这方面规律的定理我们就统称为大数定律。

一、契比雪夫不等式

Theorem 4.1设随机变量X的均值E(X)及方差D(X)存在,则对于任意正数,有不等式

P{|XE(X)|}

D(X)

成立。

或P{|XE(X)|}1

D(X)

我们称该不等式为契比雪夫(Chebyshev)不等式。Proof:(我们仅对连续性的随机变量进行证明)设f(x)为X的密度函数,记E(X),D(X)

则P{|XE(X)|}

1

f(x)dx

x

(x)

x

f(x)dx

22

2

从定理中看出,如果D(X)越小,那么随机变量X取值于开区间(E(X),E(X))中的(x)f(x)dx



D(X)

概率就越大,这就说明方差是一个反映随机变量的概率分布对其分布中心(E(X))的集中程度的数量指标。

利用契比雪夫不等式,我们可以在随机变量X的分布未知的情况下估算事件{|XE(X)|}的概率。

Example 5.1设随机变量X的数学期望E(X)10,方差D(X)0.04,估计P9.2X11的大小。

Solution

P9.2X11P0.8X101PX100.81

0.04(0.8)

0.937

5因而 P9.2X11不会小于0.9375.二、契比雪夫大数定律

Theorem 5.2设相互独立的随机变量X1,X2,,Xn,分别具有均值

E(X1),E(X2),,E(Xn),及方差D(X1)D(X2),,D(Xn),,若存在常数C,使

D(Xk)C,(k1,2,),则对于任意正整数,有

1n1n

limPXkE(Xk)1 nnk

1nk1

Proof:由于X1,X2,,Xn,相互独立,那么对于任意的n1,X1,X2,,Xn相互

独立。于是

D(1n

n

k1

Xk)

1n

n

k1

D(Xk)

Cn

令 yn

1n

n

X

k1

k,则由契比雪夫不等式有 1PYnE(Yn)1

D(Yn)

1

Cn

令n,则有

limPnE(Yn)1

n

1n1n

即limPXkE(Xk)1.nnk1

nk1

Corollary 5.1 设相互独立的随机变量X1,X2,,Xn,有相同的分布,且 E(Xk),1n

D(Xk),(k1,2,)存在,则对于任意正整数,有limPXk1.n

nk1

定理5.2我们称之为契比雪夫大数定理,推论4.1是它的特殊情况,该推论表明,当n很

1n

X大时,事件k的概率接近于1。一般地,我们称概率接近于1的事件为大概nk1

率事件),而称概率接近于0的事件为小概率事件),在一次试验中大概率事件几乎肯定要发生,而小概率事件几乎不可能发生,这一规律我们称之为实际推断原理。

三、贝努里大数定律

Theorem 5.3设m是n次独立重复试验中事件A发生的次数,p是事件A在每次试验中发生的概率,则对于任意正整数,有limP

n

m

p1.n

第k次试验A发生

1(k1,2,),X1,X2,,Xk是n个相互Proof:令XK

第k次试验A不发生0

独立的随机变量,且E(Xi)p,D(Xi)pq.又 mX1X2Xk,因而由推论4.1

mlimPp1n

n1

limPn

n

n

k1

Xkp1

定理5.3我们称之为贝努利大数定律,它表明事件A发生的频率mn依概率收敛于事件A的概率p,也就是说当n很大时事件发生的频率与概率有较大偏差的可能性很小。根据实际推断原理,当试验次数很大时,就可以利用事件发生的频率来近似地代替事件的概率。

第 18 次教案

§5.2中心极限定理

n

中心极限定理是研究在适当的条件下独立随机变量的部分和Xk的分布收敛于正态分

k1

布的问题。

Theorem 5.4设相互独立的随机变量X1,X2,,Xn,服从同一分布,且

n

E(Xk),D(Xk)

X

0,(k1,2,),则对于任意x,随机变量Yn

k1

k

n的n

分布函数Fn(x)趋于标准正态分布函数,即有

n

2Xntkx1

limFn(x)limPk1xe2dt

nn

n2



定理的证明从略。

该定理我们通常称之为林德贝格-勒维定理。

Corollary 5。2设相互独立的随机变量X1,X2,,Xn服从同一分布,已知均值为,方

n

差为

0.单分布函数未知,当n充分大时,X

n)).X

k1

k

近似服从正态分布

N(n,(

Corollary 5..3设相互独立的随机变量X1,X2,,Xn服从同一分布,已知均值为,方差为

当n充分大时,X0.单分布函数未知,n

n

Xk近似服从正态分布N(,(n)).k1

由推论5.3知,无论X1,X2,,Xn是什么样的分布函数,他的平均数X当n充分大时总是近似地服从正态分布。

Example 5.2某单位内部有260部电话分机,每个分机有4%的时间要与外线通话,可以认为每个电话分机用不同的外线是相互独立的,问总机需备多少条外线才能95%满足每个分机在用外线时不用等候? 第k个分机要用外线1

(k1,2,,260),X1,X2,,X260 Solution令XK

0第k个分机不要用外线

是260个相互独立的随机变量,且E(Xi)0.04,mX1X2X260表示同时使用外

线的分机数,根据题意应确定最小的x使P{mx}95%成立。由上面定理,有

m260px260p



260p(1p)260p(1p)

查得(1.65)0.95050.95,故,取b1.65,于是



P{mx}P



b

12



e

t

dt

xb260p(1p)260p1.652600.040.962600.0415.61

也就是说,至少需要16条外线才能95%满足每个分机在用外线时不用等候。

Example 5.3用机器包装味精,每袋净重为随机变量,期望值为100克,标准差为10克,一箱内装200袋味精,求一箱味精净重大于20500克的概率。

Solution设一箱味精净重为X克,箱中第k袋味精的净重为Xk克,k1,2,,200.X1,X2,,X200是200个相互独立的随机变量,且E(Xk)100,D(Xk)100,E(X)E(X1X2X200)20000,D(X)20000,D(X)100

2因而有P{X20500}1P{X20500}1P

X20000

500100

1(3.54)0.0002 2

Theorem 5.5(德莫佛—拉普拉斯定理DeMovire-Laplace Theorem)设mA表示n次独立重复试验中事件A发生的次数,p是事件A在每次试验中发生的概率。则对于任意区间

(a,b],恒有

limPan



mnnp



b

np(1p)

t

b

12

a

e

dt

这两个定理表明二项分布的极限分布是正态分布。一般来说,当n较大时,二项分布的概

率计算起来非常复杂,这是我们就可以用正态分布来近似地计算二项分布。

n2

Cnp(1p)

kn1

kknk

P{n1mnn2}P{(n2npnp(1p))(n1npnp(1p)n1npnp(1p)

mnnpnp(1p)

n2npnp(1p))

Example 5.4 设随机变量X服从B(100,0.8),求P{80X100}.n0.80.2

(5)(0)10.50.5SolutionP{80X100}(10080)(8080n0.80.2)

Example 5.5 设电路共电网中内有10000盏灯,夜间每一盏灯开着的概率为0.7,假设各灯的开关彼此独立,计算同时开着的灯数在6800与7200之间的概率。

Solution记同时开着的灯数为X,它服从二项分布B(10000,0.7),于是

P{6800X7200}(72007000

0.70.30.70.3200

2()12(4.36)10.999991

45.8

3)(68007000)

第五章小结

本章介绍了大数定律和中心极限定理。要求了解契比雪夫不等式、契比雪夫定理和伯努利定理;了解独立同分布的中心极限定理和德莫佛—拉普拉斯定理。

第5章大数定律和中心极限定理

第5章大数定律和中心极限定理§5.1大数定律1.依概率收敛我们曾经指出,频率是概率的反映,随着观察次数n不断增大,频率将会逐渐靠近概率,这里讲的逐渐靠近与数学分析中的极限概念有......

第5章大数定律与中心极限定理答案

nnnXXniii1A) limPxx;B)limPxx;nn21nnXXniii1i1C)limPxx;D) limPxx;nnn2其中x为标准正态分布函数.解由李雅普诺夫中心极限定理:E(Xi),D(Xi)2i1,2,,n,111Sn222nn11XinXi......

第5章大数定律与中心极限定理习题答案

5.1—5.2 大数定律与中心极限定理习题答案1解:由切比雪夫不等式得:P(|XE(X)|2=10.00920.9.即20.09,0.3故min0.32解:由 EX=2,EY=2,则E(X+Y)=0,Cov(X,Y)= XYDXDY=0.512=1,D(XY)......

第4章大数定律和中心极限定理

第四章大数定律和中心极限定理教 学 内 容 ( Contents )Chapter Four大数定律和中心极限定理(Large Number Law andCentral Limit Theorem)§4.1大数定律(Large number law)......

第5章大数定律及中心极限定理习题及答案0518

第 5 章 大数定律与中心极限定理一、填空题:2.设1,2,,n是n个相互独立同分布的随机变量,nE(i),D(i)8,(i1,2,,n)对于i1in,写出所满足的切彼雪夫不等式P{||}D()28n2,并估计P{||4}11......

《第5章大数定律和中心极限定理.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
第5章大数定律和中心极限定理
点击下载文档
相关专题 第5章中心极限定理 大数 定理 定律 第5章中心极限定理 大数 定理 定律
[其他范文]相关推荐
[其他范文]热门文章
下载全文