一次函数教案_一次函数的教案
一次函数教案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“一次函数的教案”。
一次函数(1)
知识技能目标
1.理解一次函数和正比例函数的概念;
2.根据实际问题列出简单的一次函数的表达式.
过程性目标
1.经历由实际问题引出一次函数解析式的过程,体会数学与现实生活的联系; 2.探求一次函数解析式的求法,发展学生的数学应用能力.
教学过程
一、创设情境
问题1 小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.
分析 我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是
s=570-95t.
说明 找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.
问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式. 分析 我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.
问题3 以上问题1和问题2表示的这两个函数有什么共同点?
二、探究归纳
上述两个问题中的函数解析式都是用自变量的一次整式表示的.函数的解析式都是用自变量的一次整式表示的,我们称它们为一次函数(linear function).一次函数通常可以表示为y=kx+b的形式,其中k、b是常数,k≠0.
特别地,当b=0时,一次函数y=kx(常数k≠0)出叫正比例函数(direct proportional function).正比例函数也是一次函数,它是一次函数的特例.
三、实践应用
例1 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);(2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);
(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).
分析 确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答.
20解(1)a,不是一次函数.
h(2)L=2b+16,L是b的一次函数.(3)y=150-5x,y是x的一次函数.
(4)s=40t,s既是t的一次函数又是正比例函数.
例2 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.
分析 根据一次函数和正比例函数的定义,易求得k的值.
1解 若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=.
2若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.
例3 已知y与x-3成正比例,当x=4时,y=3.(1)写出y与x之间的函数关系式;(2)y与x之间是什么函数关系;(3)求x=2.5时,y的值.
解(1)因为 y与x-3成正比例,所以y=k(x-3). 又因为x=4时,y=3,所以3= k(4-3),解得k=3,所以y=3(x-3)=3x-9.(2)y是x的一次函数.
(3)当x=2.5时,y=3×2.5=7.5.
例4 若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.分析 直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.解 因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.3例5求函数yx3与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成2的三角形的面积.3分析 求直线yx3与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标2和横坐标分别为0,可求出相应的横坐标和纵坐标;结合图象,易知直线3yx3与x轴、y轴围成的三角形是直角三角形,两条直角边就是直线23yx3与x轴、y轴的交点与原点的距离.2
解 当y=0时,x=2,所以直线与x轴的交点坐标是A(2,0);当x=0时,y=-3,所以直线与y轴的交点坐标是B(0,-3).11SOABOAOB233.22
例6 画出第一节课中问题(1)中小明距北京的路程s(千米)与在高速公路上行驶的时间t(时)之间函数s=570-95t的图象.分析 这是一题与实际生活相关的函数应用题,函数关系式s=570-95t中,自变量t是小明在高速公路上行驶的时间,所以0≤t≤6,画出的图象是直线的一部分.再者,本题中t和s取值悬殊很大,故横轴和纵轴所选取的单位长不一致.讨论 1.上述函数是否是一次函数?这个函数的图象是什么? 2.在实际问题中,一次函数的图象除了直线和本题的图形外,还有没有其他的情形?你能不能找出几个例子加以说明.例7 旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费y(元)可以
1看成他们携带的行李质量x(千克)的一次函数为yx5.画出这个函数的6图象,并求旅客最多可以免费携带多少千克的行李?
分析 求旅客最多可以免费携带多少千克的行李数,即行李费为0元时的行李数.为此只需求一次函数与x轴的交点横坐标的值.即当y=0时,x=30.由此可知这个函数的自变量的取值范围是x≥30. 解 函数y1x5(x≥30)图象为: 6
当y=0时,x=30.所以旅客最多可以免费携带30千克的行李.例8 今年入夏以来,全国大部分地区发生严重干旱.某市自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费y(元)是用水量x(吨)的函数,当0≤x≤5时,y=0.72x,当x>5时,y=0.9x-0.9.(1)画出函数的图象;
(2)观察图象,利用函数解析式,回答自来水公司采取的收费标准.分析 画函数图象时,应就自变量0≤x≤5和x>5分别画出图象,当0≤x≤5时,是正比例函数,当x>5是一次函数,所以这个函数的图象是一条折线.解(1)函数的图象是:
(2)自来水公司的收费标准是:当用水量在5吨以内时,每吨0.72元;当用水量在5吨以上时,每吨0.90元.四、交流反思
b1.一次函数y=kx+b,当x=0时,y=b;当y=0时,x.所以直线y=kx+
kbb与y轴的交点坐标是(0,b),与x轴的交点坐标是,0;
k2.在画实际问题中的一次函数图象时,要考虑自变量的取值范围,画出的图象往往不再是一条直线.
《一次函数》教案 马才义 一.教学目标1、经历一般规律的探索过程,发展学生的抽象思维能力。2、理解一次函数和正比例函数的概念,能根据所给的条件写出简单的一次函数表达式,发展......
刀豆文库小编为你整合推荐4篇一次函数教案,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
一次函数教案作为一位杰出的教职工,时常要开展教案准备工作,借助教案可以有效提升自己的教学能力。我们应该怎么写教案呢?以下是小编精心整理的一次函数教案,欢迎大家借鉴与参考......
一次函数教案教学目标1.使学生理解待定系数法; =】、】2.能用待定系数法求一次函数,用一次函数表达式解决有关现实问题. 3.感受待定系数法是求函数解析式的基本方法, 体会用“......
一次函数教案(一) 教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(......
