椭圆及其标准方程教案_椭圆及其标准方程学案
椭圆及其标准方程教案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“椭圆及其标准方程学案”。
椭圆及其标准方程教案
湖北郧阳中学
梁学文
教学目标:
使学生理解椭圆的定义,掌握椭圆的标准方程及标准方程的推导过程
培养学生运用坐标解决集合问题的能力
培养学生发现规律、寻求规律、认识规律和用规律解决问题的能力 教学重点:
椭圆的定义及标准方程的推导 教学难点:
椭圆定义的理解 教学方法;探索法 教具准备:
细绳一根 教学过程:
课前引入部分:
一、明确教学目标:告诉大家开始新的章节:圆锥曲线,思考:为什么这三类曲线叫做圆锥曲线?
二、教具演示:在黑板用细绳演示到定点距离和等于定长的点的轨迹,请同学帮忙。分三类:绳长小于两点距;等于;大于。
三、探索总结:师生共同归纳得到:绳长等于点距,得到线段;绳长大于点距,得到椭圆;绳长小于点距,不能得到图形。
定义及方程推导:
一、定义引导:
平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.
学生开始只强调主要几何特征——到两定点F1、F2的距离之和等于常数、教师在演示中要从两个方面加以强调:
(1)将穿有粉笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生认识到需加限制条件:“在平面内”.
(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.即两定点的距离。
二、方程推导 1.标准方程的推导
由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.
如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.
(1)建系设点
建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.
以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).
(2)点的集合由定义不难得出椭圆集合为: P={M||MF1|+|MF2|=2a}.(3)代数方程
(4)化简方程 化简方程可请一个反映比较快、书写比较规范的同学板演,其余同学在下面完成,教师巡视,适当给予提示:
①原方程要移项平方,否则化简相当复杂;注意两次平方的理由详见问题3说明.整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)②为使方程对称和谐而引入b,同时b还有几何意义,下节课还要
(a>b>0).
关于证明所得的方程是椭圆方程,因教材中对此要求不高,可从略.
示的椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2. 2.两种标准方程的比较(引导学生归纳)
0)、F2(c,0),这里c2=a2-b2;
-c)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到. 教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.
(三)例题与练习
例题
平面内两定点的距离是8,写出到这两定点的距离的和是10的点的轨迹的方程.
分析:先根据题意判断轨迹,再建立直角坐标系,采用待定系数法得出轨迹方程. 解:这个轨迹是一个椭圆,两个定点是焦点,用F1、F2表示.取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系.
∵2a=10,2c=8.
∴a=5,c=4,b2=a2-c2=52-45=9.∴b=3 因此,这个椭圆的标准方程是
请大家再想一想,焦点F1、F2放在y轴上,线段F1F2的垂直平分
练习1 写出适合下列条件的椭圆的标准方程:
练习2 下列各组两个椭圆中,其焦点相同的是
[
]
由学生口答,答案为D.(四)小结 1.定义:椭圆是平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.
3.图形如图2-
15、2-16.
4.焦点:F1(-c,0),F2(c,0).F1(0,-c),F2(0,c).
五、布置作业
课后习题
刀豆文库小编为你整合推荐8篇椭圆标准方程教案,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
椭圆标准方程教案椭圆标准方程教案椭圆标准方程教案教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.(二)能力目标:培养学生的动手能力、合作......
椭圆及其标准方程教案教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程,会由标准方程求出椭圆的交点和焦距;(二)能力目标:通过对椭圆概念的引入和标......
高中数学《椭圆及其标准方程》教案作为一名专为他人授业解惑的人民教师,就难以避免地要准备教案,教案是备课向课堂教学转化的关节点。教案要怎么写呢?下面是小编精心整理的高中......
刀豆文库小编为你整合推荐6篇椭圆及其标准方程的教案,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
