有理数的乘乘除法练习试题

2023-11-25 07:13:35 精品范文 下载本文

第1篇:有理数乘除法练习

有理数乘除法练习题

一、选择

1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积()A.一定为正 B.一定为负 C.为零 D.可能为正,也可能为负 2.若干个不等于0的有理数相乘,积的符号()A.由因数的个数决定 B.由正因数的个数决定

C.由负因数的个数决定 D.由负因数和正因数个数的差为决定 3.下列运算结果为负值的是()A.(-7)×(-6)B.(-6)+(-4);C.0×(-2)(-3)D.(-7)-(-15)4.下列运算错误的是()

1 A.(-2)×(-3)=6 B.(6)3

2 C.(-5)×(-2)×(-4)=-40 D.(-3)×(-2)(-4)=-24 5.若两个有理数的和与它们的积都是正数,则这两个数()A.都是正数 B.是符号相同的非零数 C.都是负数 D.都是非负数 6.下列说法正确的是()A.负数没有倒数 B.正数的倒数比自身小 C.任何有理数都有倒数 D.-1的倒数是-1 7.关于0,下列说法不正确的是()A.0有相反数 B.0有绝对值

C.0有倒数 D.0是绝对值和相反数都相等的数 8.下列运算结果不一定为负数的是()A.异号两数相乘 B.异号两数相除 C.异号两数相加 D.奇数个负因数的乘积 9.下列运算有错误的是()11 A.÷(-3)=3×(-3)B.(5)5(2)

32 C.8-(-2)=8+2 D.2-7=(+2)+(-7)10.下列运算正确的是()

3411 A.34;B.0-2=-2;C.1;D.(-2)÷(-4)=2

432211.5个非零有理数相乘,积为正数,这些有理数不可能是()A.五个都是正数 B.其中两负三正 C.其中四负一正 D.其中两正三负 12.若a+b+c=0,且 b<c<0,则一定错误的是()A.a+b>0 B.b+c<0 C.a+bc>0 D.ab+ac>0

二、填空

1.如果两个有理数的积是正的,那么这两个因数的符号一定______.2.如果两个有理数的积是负的,那么这两个因数的符号一定_______.3.奇数个负数相乘,结果的符号是_______.4.偶数个负数相乘,结果的符号是_______.5.如果4a0,1b0,那么ab_____0.6.如果5a>0,0.3b

7.-0.125的相反数的倒数是________.8.若a>0,则aa=_____;若a

三、解答 1.计算:(1)348;(2)213(6);(3)(-7.6)

(4)3121;(5)-24×(752312-6-1)

2.计算.(1)834(4)2;(2)834(4)(2);(3)

×0.5;834(4)(2).3.计算

(1)111111;

(2)1

(3)(+

(4)(-7

(5)1-3 + 5 –7 + 9 – 11 + „„ + 97 – 99

12131415161711111111111.22334432249)×(-1)×(-2)×(+1)×(-4)853716363111)×(3-7)××(-)

2222373

4.计算

(1)(+48)÷(+6);(2)35;(3)4÷(-2);(4)0÷(-1000).2132

5.计算.(1)(-1155)÷[(-11)×(+3)×(-5)];

(3)131(5)6233(5).6.计算

(1)113182;

(3)(-287+14789)÷7

(2)375÷2332;(4)(-56)×(-2.4)×(+35)(2)81111339.4)-(-3115)×(-32)÷(-14)÷3

((5)-36×((8)-2×4512415-+1)

(6)99×(-5)(7)-71×(-8)96325161111÷(-)×2(9)15÷(-)2253

7.混合运算

(1)-3-[-5+(1-0.2×

(2)((3)

3)÷(-2)] 5753-+)×18-1.45×6+3.95×6 96183822÷(-2)-×(-1)-0.75

42155

(4)-4×(-3)-[3.45+((5)25×

(6)(-1

(7)[1-(1-0.5)×

11-2)÷] 48131-(-25)×+25×(-)244192)×(+)×(-8)-9÷(-)44511]×[2-(-3)÷] 33(8)0.25×1 +0.75×(-1)

(9)|-1.3|+0÷(5.7×|-1 |+2)

(10)-3-[-5+(1-2×3)÷(-2)]÷0.1

5(11)999 +(-999)×(-999)+ 999 – 999999

(12)(-1990)×(-84)-48×(-1990)-1990×14-18×1990

(13)[ 211÷(-4)+(-1)×(-0.4)]÷(-)-2 343

四、探究题

1、小韦与同学一起玩“24点扑克牌游戏”,即以一副扑克牌(去掉大、小王)中任意抽取4张,根据牌面上的数字进行有理数的混合运算(每张牌只能用一次)使运算结果为24或-24,其中红色扑克代表负数,黑色扑克代表正数,小韦抽到的4张牌为 “梅花2,梅花A,方片3,方片2”“哇!我得到24点了!”他的算法是_____________________

2、现有四个有理数3,4,-6,10将这四个数(每个数只能用一次)进行加减乘除四则运算,使其结果等于24,请你写出一个符合条件的算式_____________________

3、观察下列算式

1=12 1+3=4=22 1+3+5=9=32 1+3+5+7=16=42 „„

那么1+3+5+„+199=_______

4、已知a、b互为相反数,c、d互为倒数,x的绝对值为5,试求:

x2-(a+b+cd)x+(a+b)1998+(-cd)1999的值。

第2篇:有理数的乘乘除法练习试题

有理数的乘乘除法练习试题

有理数的乘除法练习题

1、计算:(1)(2)

(3)(4)1.6×

2、若ab>0,a+b<0,则a、b这两个数()

A.都是正数B.都是负数C.一正一负D.不能确定

3、四个互不相等的整数的积是9,那么这四个整数的和等于()

A.27B.9C.0D.以上答案都不对

4、计算:(1)

(2)

5、计算:(1)

(2)

6、计算:(1)(2)

7、计算:

8、计算:(1)

(2)

9、下列各组数中,互为倒数的是()

A.1和0B.C.-4和4D.-0.25和-4

10、计算:

11、下列说法正确的是()

A.倒数等于本身的数是1B.正数的倒数比自身小

C.任何有理数都有倒数D.一个非零数与其倒数之积为1

12、计算:

13、计算:

14、计算:

15、计算:

16、计算(1)(2)

(3)(4)

第3篇:有理数乘除法计算题专项练习

有理数乘除法计算题专项练习

(-9)×3

(-13)×(-0.26)

(-2)×31×(-0.5)

113×(-5)+3×(-13)

(-4)×(-10)×0.5×(-3)

(-38)×43×(-1.8)

(-37)×(-45)×(-

127)

(56―34―79)×36

0.25)×(-47)×4×(-7)

(-8)×4×(-

12)×(-0.75)

(-36)×(94+65-127)

(-

4×(-96)×(-0.25)×

25×

71834148413

(7-18+14)×56

-(-25)×+25×121421

(-66)×〔122-(-3)+(-11)〕

15×(-72)+34×72-

56×(-72)+(-

79)×72

18÷(-3)

(-24)÷6

(-57)÷(-3)

(-

(-42)÷(-6)

(+

35)÷

521)÷(-

3791)

(-13)÷9

0.25÷(-8)-36÷(-1)÷(-

0÷[(-3

2÷(5-18)×

1181323)

(-1)÷(-4)÷

3÷(-

67)×(-

79)14116)×(-7)]

-3÷(3-4)

(-247)÷

未完,继续阅读 >

第4篇:有理数乘除法知识点与练习

有理数乘除法

教学目标

1.使学生掌握多个有理数相乘的积的符号法则;

2.掌握有理数乘法的运算律,并利用运算律简化乘法运算; 3.使学生理解有理数倒数的意义;

4.使学生掌握有理数的除法法则,能够熟练地进行除法运算; 教学重点:

有理数乘法的运算.乘法的符号法则和乘法的运算律.有理数除法法则. 教学难点:

积的符号的确定.商的符号的确定. 知识点:

1·有理数乘法的法则:

两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同0相乘,都得0. 2·几个有理数相乘时积的符号法则:

几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正. 几个有理数相乘,有一个因数为0,积就为0. 注意:第一个因数是负数时,可省略括号. 3·乘法交换律:abc=cab=bca 乘法结合律:a(bc)d=a(bcd)=…… 分配律:a(b+c+d+…+m)=ab+ac+ad+…+am 4·倒数:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子

未完,继续阅读 >

第5篇:有理数乘除法教案

学习目标

1.掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算。2.通过体验有理数的乘法运算,感悟和归纳出进行乘法运算的一般步骤。3.根据情境创设把有理数的除法转化为乘法。会进行有理数的乘法混合运算

学习重点

1.应用法则正确地进行有理数乘法运算。2.两负数相乘,积的符号为正。

3.有理数除法法则和有理数乘除混合运算的熟练运用

有理数的乘法

一、引入 计算下列各题;

二、新课

我们以蜗牛爬行距离为例,为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正。如图,一只蜗牛沿直线l爬行,它现在的位置恰在l上的点O。

1.正数与正数相乘

问题一:如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?

(+2)×(+3)=+6 答:结果向东运动了6米. 2.负数与正数相乘

问题二:如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?

(-2)×(+3)=(-6)3.正数与负数相乘

问题三:如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?

(+2)×(-3)=

未完,继续阅读 >

《有理数的乘乘除法练习试题.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
有理数的乘乘除法练习试题
点击下载文档
相关专题
[精品范文]相关推荐
[精品范文]热门文章
下载全文