高数积分总结_高数积分方法总结

2020-02-28 其他工作总结 下载本文

高数积分总结由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“高数积分方法总结”。

高数积分总结

一、不定积分

1、不定积分的概念也性质

定义1:如果在区间I上,可导函数F(x)的导函数为f(x),即对任一xI,都有

F`(x)=f(x)或dF(x)=f(x)dx, 那么函数F(x)就称为f(x)(或f(x)dx)在区间I上的原函数。定义2:在区间I上,函数f(x)的带有任意常数项的原函数称为f(x)(或者f(x)dx)在区间I上的不定积分,记作

f(x)dx。

性质1:设函数f(x)及g(x)的原函数存在,则

[f(x)g(x)]dxf(x)dxg(x)dx。

性质2:设函数f(x)的原函数存在,k为非零常数,则

kf(x)dxkf(x)dx。

2、换元积分法(1)第一类换元法:

定理1:设f(u)具有原函数,(x)可导,则有换元公式

f[(x)]'(x)dx[f()d]

(x)。例:求2cos2xdx

解 2cos2xdxcos2x2dxcos2x(2x)'dxcosd 将2x代入,既得

2cos2xdxsin2xC

(2)第二类换元法:

定理2:设x(t)是单调的、可导的函数,并且'(t)0.又设f[(t)]'(t)具有原函数,则有换元公式

f(x)dx[f[(t)]'(t)dt]1其中(x)是x(t)的反函数。

t1(x),例:求dxxa22(a0)

22解

∵1tantsect,设xtantt,那么

22x2a2a2a2tan2ta1tan2tasect,dxasec2tdt,于是

asec2tdtsectdt 22asectxadx∴∵sect∴dxdxxa22lnsecttantC

x2a2,且secttant0 aCln(xx2a2)C,CClna 1122xxalnaax2a2

3、分部积分法

定义:设函数(x)及(x)具有连续导数。那么,两个函数乘积的导数公式为

'''

移项得

'()''

对这个等式两边求不定积分,得

'dx'dx

此公式为分部积分公式。例:求xcosxdx 解 xcosxdxxsinxsinxdx

∴xcosxdxxsinxcosxC 分部积分的顺序:反对幂三指。

4、有理函数的积分 例:求x1dx 2x5x62解

∵x5x6(x3)(x2),故设

x1AB

x25x6x3x2其中A,B为待定系数。上式两端去分母后,得

x1A(x2)B(x3)

x1(AB)x2A3B

比较上式两端同次幂的系数,既有

AB1 2A3B1从而解得

A4,B3 于是

x134dx4lnx33lnx2C x25x6dxx3x2其他有些函数可以化做有理函数。

5、积分表的查询

二、定积分

1、定积分的定义和性质

(1)定义:设函数f(x)在a,b上有界,在a,b中任意插入若干个分点

ax0x1x2xn1xnb

把区间a,b分成n个小区间

x0,x1,x1,x2,,xn1,xn

各个小区间的长度依次为

x1x1x0,x2x2x1,,xnxnxn1

在每个小区间xi1,xi上任取一点ixi1ixi,作函数值f(i)与小区间长度xi的乘积f(i)xii1,2,,n,并作出和

Sf(i)xi

i1n记maxx1,x2,,xn,如果不论对a,b怎么划分,也不论在小区间xi1,xi上点i怎么选取,只要当0时,和S总趋于确定的极限I,那么称这个极限I为函数(简称积分),记作

f(x)在区间a,b上的定积分

baf(x)dx,即

n其中变量,baf(x)dxIlimf(i)xi

0i1f(x)叫做被积函数,f(x)dx叫做被积表达式,x叫做积分a叫做积分下限,b叫做积分上限,a,b叫做积分区间。

f(x)在区间a,b上有界,且只有有限个间断点,则f(x)定理1:设f(x)在区间a,b上连续,则f(x)在a,b上可积。定理2:设在a,b上可积。(2)性质1:

性质2:f(x)g(x)dxabbaf(x)dxg(x)dx

abkf(x)dxkabbaf(x)dx

(k是常数)

性质3:设acb,则

baf(x)dxf(x)dxf(x)dx

accb

性质4:如果在区间a,b上f(x)1,则

1dxdxba

aabb

性质5:如果在区间a,b上,f(x)0,则

babaf(x)dx0ab

推论1:如果在区间a,b上,f(x)g(x),则

f(x)dxg(x)dxab

ab

推论2:

baf(x)dxf(x)dx(ab)

ab

性质6:设M及m分别是函数最小值,则

f(x)在区间a,b上的最大值和m(ba)f(x)dxM(ba)(ab)

ab

性质7(定积分中值定理):如果函数f(x)在积分区间a,b上连续,则在a,b上至少存在一个点,使下式成立

baf(x)dxf()(ba)(ab)

2、微积分基本公式(1)积分上限函数及其导数

定理1:如果函数f(x)在区间a,b上连续,则积分上限的函数

xf(t)dt

ax在a,b上可导,并且它的导数

dx'(x)f(t)dtf(x)(axb)adx定理2:如果函数f(x)在区间a,b上连续,则函数

(x)f(t)dt

ax就是f(x)在区间a,b上的一个原函数。

f(x)在区间a,b上的一个原函(2)牛顿-莱布尼茨公式

定理3:如果函数F(x)是连续函数数,则

(1)定积分的换元法 定理:

三、多元函数微分

四、重积分

五、曲面和曲线积分

baf(x)dxF(b)F(a)

3、定积分的换元法和分部积分法

高数积分总结

高数积分总结一、不定积分1、不定积分的概念也性质定义1:如果在区间I上,可导函数F(x)的导函数为f(x),即对任一xI,都有F`(x)=f(x)或dF(x)=f(x)dx, 那么函数F(x)就称为f(x)(或f(x)d......

高数积分总结

第四章 一元函数的积分及其应用 第一节 不定积分 一、原函数与不定积分的概念定义1.设f(x)是定义在某区间的已知函数,若存在函数F(x),使得F(x)或dFf(x)(x)f(x)dx,则称F(x)为f(......

高数下册各类积分方法总结

综述:高数下册,共有如下几类积分:二重积分,三重积分,第一类线积分,第二类线积分,第一类面积分,第二类面积分。其中,除线积分外,个人认为,拿到题后,首先应用对称性把运算简化,线积分的对称......

高数总结

高数总结公式总结:1.函数定义域 值域Y=arcsinx [-1,1] [-π/2, π/2] Y=arccosx[-1,1] [0, π] Y=arctanx(-∞,+∞)(-π/2, π/2) Y=arccotx (-∞,+∞)(0, π) Y=shx(-∞,+∞) (-......

考研数学:高数重要公式总结(基本积分表)

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员!考研数学:高数重要公式总结(基本积分表)考研数学中公式的理解、记忆是最基础的,其次才能针对具体题型进行基础知识运用、正......

《高数积分总结.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
高数积分总结
点击下载文档
相关专题 高数积分方法总结 高数 积分 高数积分方法总结 高数 积分
[其他工作总结]相关推荐
[其他工作总结]热门文章
下载全文