几何证明选讲习题_几何证明选讲例题

2020-02-28 证明 下载本文

几何证明选讲习题由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“几何证明选讲例题”。

几何证明选讲

已知正方形ABCD,E、F分别为BC、AB边上的点,且BE=BF,BH⊥CF于H,连结DH.求证:DH⊥EH.已知AD⊥BC于D,AE:ED=CD:BD,DF⊥BE于F,求证:AF⊥CF.已知正方形ABCD,E为对角线AC上一点,AE=3CE,F为AB边中点,求证:DE⊥EF.F

B

如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,BACAGF90,它们的斜边长为2,若△ABC固定不动,△AFG绕点

A旋转,AF,AG与边BC的交点分别为D,E(点D不与点B重合,点E不与点C重合),设BEm,CDn.

(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;(2)求m与n的函数关系式,直接写出自变量n的取值范围;

(3)以△ABC的斜边BC所在直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BDCE,求出D点的坐标,并通过计算

验证BDCEDE.

(4)在旋转过程中,(3)中的等量关系BDCEDE是否始终成立,若成立,请证明;若不成立,请说明理由.

A

C G

2F 图

1图2

如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF. 解答下列问题:

(1)如果AB=AC,∠BAC=90º.

①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.

F

E

A

E

C

B

图乙

FEC

B图甲

图丙

②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?

(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.

试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)

(3)若AC

=BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.

已知:如图①所示,在△ABC和△ADE中,ABAC,ADAE,BACDAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BECD;②△AMN是等腰三角形.

(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;

△PBD∽△AMN.(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:

C

B

D

B

E

图② A

如图,已知:Rt△ABC中,C90,ACBC2,将一块三角尺的直角顶点与斜边

A 图①

AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC,AC交于D,E两点(D,E不与B,A重合).(1)求证:MDME;

(2)求四边形MDCE的面积;

(3)若只将原题目中的“ACBC2”改为“BCa,ACb(ab)”其它都不变,请你探究:MD和ME还相等吗?如果相等,请证明;如果不相等,请求出MD:ME的值.B

D

M

C

E

A

《选修21,几何证明选讲》习题

东方英文书院2011——2012学年高二数学测试卷(文科)——《选修2-1,几何证明选讲》以下公式或数据供参考nybx;b⒈axynxyiii1xi1n2inx2.2、参考公式3、K2n(adbc)2(ab)(cd)(ac)(bd)......

几何证明选讲

几何证明选讲2007年:15.(几何证明选讲选做题)如图4所示,圆O的直径AB6, C为圆周上一点,BC3,过C作圆的切线l,过A作l的 垂线AD,垂足为D,则DACA2008年:15.(几何证明选讲选做题)已知PA是圆O的切......

高中数学几何证明选讲

几何证明选讲1、(佛山市2014届高三教学质量检测(一))如图,从圆O 外一点A引圆的切线AD和割线ABC,已知AD3,AC3,圆O的半径为5,则圆心O 到AC的距离为. 答案:22、(广州市2014届高三1月调研测......

几何证明选讲测试题

几何证明选讲测试题班级姓名一. 选择题1.如图所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC=()A.15B.30C.45D.602.一个圆的两弦相交......

几何证明选讲专题)

几何证明选讲专题1.了解平行线截割定理,会证直角三角形射影定理.2.会证圆周角定理、圆的切线的判定定理及性质定理.3.会证相交弦定理、圆内接四边形的性质定理与判定定理、切......

《几何证明选讲习题.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
几何证明选讲习题
点击下载文档
相关专题 几何证明选讲例题 证明 习题 几何 几何证明选讲例题 证明 习题 几何
[证明]相关推荐
[证明]热门文章
下载全文