《平行线的性质》证明题练习_平行线的证明练习题
《平行线的性质》证明题练习由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“平行线的证明练习题”。
《平行线的性质》证明题练习
一、基础过关:
1.如图1,a∥b,a、b被c所截,得到∠1=∠2的依据是()
A.两直线平行,同位角相等B.两直线平行,内错角相等
C.同位角相等,两直线平行D.内错角相等,两直线平行
(1)(2)(3)
2.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()
A.互相垂直B.互相平行C.相交D.无法确定
3.如图2,AB∥CD,那么()
A.∠1=∠4B.∠1=∠3C.∠2=∠3D.∠1=∠
54.如图3,在平行四边形ABCD中,下列各式不一定正确的是()
A.∠1+∠2=180°B.∠2+∠3=180°
C.∠3+∠4=180°D.∠2+∠4=180°
5.如图4,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()
A.30°B.60°C.90°D.120°
图5 C D
(4)(5)
6.如图5,AB∥EF,BC∥DE,则∠E+∠B的度数为________.
7.如图5,填空并在括号中填理由:
(1)由∠ABD =∠CDB得∥();
(2)由∠CAD =∠ACB得∥();
(3)由∠CBA +∠BAD = 180°得∥()
10.如图8,推理填空:
(1)∵∠A =∠(已知),AC∥ED();
(2)∵∠2 =∠(已知),∴AC∥ED();
B D
图8
C
(3)∵∠A +∠= 180°(已知),∴AB∥FD();(4)∵∠2 +∠= 180°(已知),∴AC∥ED();
二、综合创新: 8.(综合题)如图,已知∠AMB=∠EBF,∠BCN=∠BDE,求证:∠CAF=∠AFD.
10.(创新题)(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?
(2)在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.
11.(1)如图6,已知AB∥CD,直线L分别交AB、CD•于点E、F,EG平分∠BEF,若∠EFG=40°,则∠EGF的度数是()
A.60°B.70°C.80°D.90°
(6)(7)
(2)已知:如图7,AB∥DE,∠E=65°,则∠B+∠C•的度数是()A.135°B.115°C.65°D.35°
三、培优: 12.(探究题)如图,在折线ABCDEFG中,已知∠1=∠2=∠3=∠4=•∠5,•延长AB、GF交于点M.试探索∠AMG与∠3的关系,并说明理由.
13.(开放题)已知如图,四边形ABCD中,AB∥CD,BC∥AD,那么∠A与∠C,∠B与∠D的大小关系如何?请说明你的理由.
一、探索平移的性质
1.(1)在图1中,画图:把线段AB向左平移4格,得到线段A’B’.(2)线段AB与A’B’叫做对应线段,平移后对应线段之间的位置和数量有什么关系?,(3)点A通过平移得到点A’,点A与点A’是一组对应点.同样的,点B与B’ 是另一组
图
1A
B
对应点.用红线画出连结各组对应点的线段AA’与BB’,线段AA’与BB’之间的位置和数量有什么关系?,2.(1)在图2中,画图:把△ABC向右平移4格,得到△A’B’C’.(2)对应线段AB与A’B’、BC与B’C’、AC与A’C’ 之间的数量与位置有什么关系?,(3)点A与A’是一组对应点,点B与B’、点C与C’是对应点.用红线画出连结各组对应点的线段AA’与BB’,线段AA’与BB’之间的位置和数量有什么关系?,;再用红线画出连结各组对应点的线段CC’,线段AA’与CC’之间的位置和数量有什么关系?,;线段AA’、BB’、CC’之间的位置和数量有什么关系? 结论:如果两条直线平行,那么其中一条直线上的任意两点到的距离相等,这个距离称为.图
2A
B
C
如果两条直线平行,那么其中一条直线上的任意一点到另一条直线的垂线段的长就是平行线间的距离.平行线间的距离处处相等.三、应用平移解决实际问题
1.在长40m、宽30m的长方形地块上,修建如下的宽1m的道路,余下部分种菜,求菜地的面积.(1)如图6,有3条道路.(2)如图7,一条道路是平行四边形.(3)如图8,道路弯曲.图6
图
图
解:
2.如图9,由两个边长为6的正方形拼成一个长方形.求图中阴影部分的面积.图9
1、如图EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。证明:∵EF∥AD,(已知)∴∠2=.()又∵∠1=∠2,(已知)∴∠1=∠3.(等量代换)∴AB∥()∴∠BAC+=180 o .(∵∠BAC=70 o∴∠AGD=.6、如图,a∥b,c∥d,∠1=113......
平行线的性质证明题1、如图,如果AB∥CD平行,试说明1=4。2、如图所示,已知DC∥AB,AC平分∠DAB,试说明∠1=∠2.A34B2D1CD2 C3、如图,已知:EF∥GH,∠1+∠3=180°,试说明∠2=∠3.1ABE1......
平行线的性质证明题1、如图,如果AB∥CD平行,试说明1=4。2、如图所示,已知DC∥AB,AC平分∠DAB,试说明∠1=∠2.4BDC3、如图,已知:EF∥GH,∠1+∠3=180°,试说明∠2=∠3.4、已知:如图AE......
平行线的性质证明题这是判定平行线两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。也可以简单的说成:1.同位角相等两直线平行两条直线被第三条直线所截,如果同位......
桐峙中学《平行线的性质与判定》练习卷班级:姓名:号次:1.如图,AE∥BC, AE平分∠DAC,试判定∠B与∠C的大小关系,并说明理由。DAECB2.如图,直线AD与CE交于D,且∠1+∠E = 180°,求证:AB∥EF......
