利用导数证明不等式的常见题型经典_导数证明中常用不等式
利用导数证明不等式的常见题型经典由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“导数证明中常用不等式”。
利用导数证明不等式的常见题型及解题技巧
技巧精髓
1、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
一、利用题目所给函数证明
【例1】 已知函数f(x)ln(x1)x,求证:当x1时,恒有
11ln(x1)x x
1分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数
11,从其导数入手即可证明。x1
1x【绿色通道】f(x)1x1x1g(x)ln(x1)
∴当1x0时,f(x)0,即f(x)在x(1,0)上为增函数
当x0时,f(x)0,即f(x)在x(0,)上为减函数
故函数f(x)的单调递增区间为(1,0),单调递减区间(0,)
于是函数f(x)在(1,)上的最大值为f(x)maxf(0)0,因此,当x1时,f(x)f(0)0,即ln(x1)x0∴ln(x1)x(右面得证),现证左面,令g(x)ln(x1)11x1 1,则g(x)22x1(x1)x1(x1)
当x(1,0)时,g(x)0;当x(0,)时,g(x)0,即g(x)在x(1,0)上为减函数,在x(0,)上为增函数,故函数g(x)在(1,)上的最小值为g(x)ming(0)0,110 x1
11∴ln(x1)1,综上可知,当x1时,有1ln(x1)xx1x1
【警示启迪】如果f(a)是函数f(x)在区间上的最大(小)值,则有f(x)f(a)(或f(x)f(a)),那么要证不等式,只要求函数的最大值不超过0就可得证. ∴当x1时,g(x)g(0)0,即ln(x1)
2、直接作差构造函数证明
【例2】已知函数f(x)
图象的下方;
122xlnx.求证:在区间(1,)上,函数f(x)的图象在函数g(x)x3的2
3分析:函数f(x)的图象在函数g(x)的图象的下方不等式f(x)g(x)问题,12212xlnxx3,只需证明在区间(1,)上,恒有x2lnxx3成立,设2323
1F(x)g(x)f(x),x(1,),考虑到F(1)0 6
要证不等式转化变为:当x1时,F(x)F(1),这只要证明: g(x)在区间(1,)是增函数即可。
21【绿色通道】设F(x)g(x)f(x),即F(x)x3x2lnx,32即
1(x1)(2x2x1)则F(x)2xx= xx
2(x1)(2x2x1)当x1时,F(x)= x
从而F(x)在(1,)上为增函数,∴F(x)F(1)
∴当x1时 g(x)f(x)0,即f(x)g(x),故在区间(1,)上,函数f(x)的图象在函数g(x)10 623x的图象的下方。3
【警示启迪】本题首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。读者也可以设F(x)f(x)g(x)做一做,深刻体会其中的思想方法。
3、换元后作差构造函数证明
都成立.nn2n
31分析:本题是山东卷的第(II)问,从所证结构出发,只需令x,则问题转化为:当x0时,恒n【例3】(2007年,山东卷)证明:对任意的正整数n,不等式ln(1)
有ln(x1)xx成立,现构造函数h(x)xxln(x1),求导即可达到证明。
【绿色通道】令h(x)xxln(x1),32233
213x3(x1)2
则h(x)3x2x在x(0,)上恒正,x1x12
所以函数h(x)在(0,)上单调递增,∴x(0,)时,恒有h(x)h(0)0,即xxln(x1)0,∴ln(x1)xx
对任意正整数n,取x32231111(0,),则有ln(1)23 nnnn
【警示启迪】我们知道,当F(x)在[a,b]上单调递增,则xa时,有F(x)F(a).如果f(a)=(a),要证明当xa时,f(x)(x),那么,只要令F(x)=f(x)-(x),就可以利用F(x)的单调增性来推导.也就是说,在F(x)可导的前提下,只要证明F'(x)0即可.
4、从条件特征入手构造函数证明
【例4】若函数y=f(x)在R上可导且满足不等式xf(x)>-f(x)恒成立,且常数a,b满足a>b,求
证:.af(a)>bf(b)
【绿色通道】由已知 xf(x)+f(x)>0 ∴构造函数 F(x)xf(x),则F(x) xf(x)+f(x)>0,从而F(x)在R上为增函数。'
ab ∴F(a)F(b)即 af(a)>bf(b)
【警示启迪】由条件移项后xf(x)f(x),容易想到是一个积的导数,从而可以构造函数F(x)xf(x),求导即可完成证明。若题目中的条件改为xf(x)f(x),则移项后xf(x)f(x),要想到
是一个商的导数的分子,平时解题多注意总结。
【思维挑战】
21、(2007年,安徽卷)设a0,f(x)x1lnx2alnx
求证:当x1时,恒有xlnx2alnx1,2、(2007年,安徽卷)已知定义在正实数集上的函数
2f(x)52122x2ax,g(x)3a2lnxb,其中a>0,且ba3alna,22
求证:f(x)g(x)
3、已知函数f(x)ln(1x)
恒有lnalnb1x,求证:对任意的正数a、b,1xb.a4、(2007年,陕西卷)f(x)是定义在(0,+∞)上的非负可导函数,且满足xf(x)f(x)≤0,对任意正数a、b,若a
(A)af(b)≤bf(a)(C)af(a)≤f(b)
【答案咨询】
1、提示:f(x)1
∴(B)bf(a)≤af(b)(D)bf(b)≤f(a)2lnx2a2lnx,当x1,a0时,不难证明1 xxxf(x)0,即f(x)在(0,)内单调递增,故当x1时,2f(x)f(1)0,∴当x1时,恒有xlnx2alnx
13a21222、提示:设F(x)g(x)f(x)x2ax3alnxb则F(x)x2a x
2(xa)(x3a)=(x0)a0,∴ 当xa时,F(x)0,x
故F(x)在(0,a)上为减函数,在(a,)上为增函数,于是函数F(x)在(0,)上的最小值
是F(a)f(a)g(a)0,故当x0时,有f(x)g(x)0,即f(x)g(x)
3、提示:函数f(x)的定义域为(1,),f(x)11x 221x(1x)(1x)
∴当1x0时,f(x)0,即f(x)在x(1,0)上为减函数
当x0时,f(x)0,即f(x)在x(0,)上为增函数
因此在x0时,f(x)取得极小值f(0)0,而且是最小值 x1,即ln(1x)1 1x1x
a1bab令1x0,则11于是ln1 bx1aba
b因此lnalnb1 a于是f(x)f(0)0,从而ln(1x)
xf'(x)f(x)f(x)f(x)
4、提示:F(x),F(x),故在(0,+∞)上是减函数,由0F(x)2xxx
ab 有f(a)f(b) af(b)≤bf(a)故选(A)ab
大毛毛虫★倾情搜集★精品资料利用导数证明不等式的常见题型及解题技巧技巧精髓1、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,......
利用导数证明不等式没分都没人答埃。。觉得可以就给个好评!最基本的方法就是将不等式的的一边移到另一边,然后将这个式子令为一个函数f(x).对这个函数求导,判断这个函数这各个......
利用导数证明不等式例1.已知x>0,求证:x>ln(1+x) 分析:设f(x)=x-lnx。x[0,+。考虑到f(0)=0,要证不等式变为:x>0时,f(x)>f(0), 这只要证明:f(x)在区间[0,)是增函数。证明:令:f(x)=x-lnx,容......
克维教育(82974566)中考、高考培训专家铸就孩子辉煌的未来函数与导数(三)核心考点五、利用导数证明不等式一、函数类不等式证明函数类不等式证明的通法可概括为:证明不等式f(x)g(......
谈利用导数证明不等式数学组邹黎华在高考试题中,不等式的证明往往与函数、导数、数列的内容综合,属于在知识网络的交汇处设计的试题,有一定的综合性和难度,突出体现对理性思维的......
