华东师范大学数学分析电子教案12_数学分析华师大版pdf

2020-02-27 教案模板 下载本文

华东师范大学数学分析电子教案12由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“数学分析华师大版pdf”。

110;

110)作10等分,分点为:n.n11,n.n12,,n.n19,则存在0,1,2,,9中的一个数n2第一章 实数集与函数

§2 数集.确界原理

《数学分析》电子教案

(1)对任何xS,有xn.n1n2(2)存在a2S,使a2n.n1n2.1102;

如此不断10等分前一步骤所得区间,可知对任何k1,2,存在0,1,2,,9中的一个数nk,使得:(1)对任何xS,有xn.n1n2nk(2)存在akS,使akn.n1n2nk.将以上步骤无限进行下去,得到实数n.n1n2nk,以下证明supS,即证:(ⅰ)对一切xS,有x;(ⅱ)对任何,存在x0S使得x0S.110k;

先证(ⅰ):(反证)假设存在xS,使x,则可找到非负整数k,使xkk,而xxk且kn.n1n2nk110k,故xn.n1n2nk110k与(1)矛盾,故对一切xS,有x.再证(ⅱ): 由知存在非负整数k,使kk,而kn.n1n2nk,k,故n.n1n2nk,由(2)便知存在x0S使x0n.n1n2nk

确界原理是数学分析极限理论的基础,因此具有极其重要的地位,应对定理的内容充分理解,给予充分重视.例4 设数集S有上界,证明:supSSmaxS.分析:由确界原理,supS意义,按确界定义证明。

证(必要性)因为supS,所以对一切xS有x,又S,故maxS.(充分性)设maxS,则:对一切xS,有x;对任何,只需取x0S,则x0,故supS。

例5 设A、B为非空数集,满足:对一切xA和yB有xy.证明:数集A有上确界,数集B有下确界,且supAinfB.分析:首先,证明supA,infB.有意义,用确界原理.其次,证明supAinfB.证

由假设,数集B中任一数y都是数集A的上界,A中任一数x都是B的下界,故由确界原理推知数集A有上确界,数集B有下确界.对任何yB,y是数集A的一个上界,而由上确界的定义知,supA是数集A的最小上界,故有supAy.而此式又表明supA是数集B的一个下界,故由下确界定义证得supAinfB.

华东师范大学数学分析考研试题

华东师范大学2008年攻读硕士学位研究生入学试题考试科目代码及名称:数学分析一、判别题(6*6=30分)(正确的说明理由,错误的举出反例)1.数列ann1收敛的充要条件是对任意0,存在正整数N......

高等数学电子教案12

高等数学教案 第十二章 无穷级数第十二章无穷级数教学目的: 1、理解无穷级数收敛、发散以及和的概念。2、了解无穷级数基本性质及收敛的必要条件。3、掌握几何级数和p-级数的......

数学分析 教案

第九章空间解析几何教学目标:1.理解空间直角坐标系的概念,掌握两点间的距离公式. 2.理解向量的概念、向量的模、单位向量、零向量与向量的方向角、方向余弦概念. 3.理解向量的加......

《数学分析》教案

《数学分析》教案 S F 01 ( 数 )C h0 数学分析课程简介C h 1 实数集与函数计划课时: Ch 02时Ch 16时 P 1—8 说 明:1.这是给数学系2001届学生讲授《数学分析》课编制的教案. 该......

数学分析教案

数学分析教案第7章 实数的完备性§7.1 实数完备性的基本定理数学分析是建立在极限理论这个基础上,而极限理论的基础是实数,实数理论就成为基础的基础.有关实数理论的知识,参见......

《华东师范大学数学分析电子教案12.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
华东师范大学数学分析电子教案12
点击下载文档
相关专题 数学分析华师大版pdf 华东师范大学 数学分析 教案 数学分析华师大版pdf 华东师范大学 数学分析 教案
[教案模板]相关推荐
[教案模板]热门文章
下载全文