柯西不等式的证明及应用_关于柯西不等式的证明

2020-02-27 证明 下载本文

柯西不等式的证明及应用由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“关于柯西不等式的证明”。

柯西不等式的证明及应用

(河西学院数学系01(2)班甘肃张掖734000)

摘要:柯西不等式是一个非常重要的不等式,灵活巧妙的应用它,可以使一些较为困难的问题迎刃而解。本文在证明不等式,解三角形相关问题,求函数最值,解方程等问题的应用方面给出几个例子。

关键词:柯西不等式证明应用中图分类号:O178

Identification and application of Cauchy inequality

ChenBo

(department of mathematics , Hexi university zhangye gansu 734000)

Abstract:Cauchy-inequality is a very important in equation, flexible ingenious application it, can make some comparatively difficult problems easily solved.This text prove inequality, solve triangle relevant problem, is it worth most to ask, the application which solves such questions as the equation ,etc.provides several examples.Keyword:inequationproveapplication

柯西(Cauchy)不等式

12

222

a1b1a2b2anbna1a2an

b

2122b2bn

abR,i1,2n

ii

等号当且仅当a1a2an0或bikai时成立(k为常数,i1,2n)现将它的证明介绍如下:

证明1:构造二次函数 f(x)a1xb1a2xb2anxbn

22n222n

=a1a2anx2a1b1a2b2anbnxb1b2bn



2n

a12a2an0

fx0恒成立

2n4a1b1a2b2anbn4a12a2anb12b22bnn0

即a1b1a2b2anbna1a2an

n

b

2nb2bn

当且仅当aixbix0i1,2n即证明(2)数学归纳法

aa1a2

n时等号成立 b1b2bn

(1)当n1时左式=a1b1右式=a1b1 显然左式=右式

n2时,右式

a12a2b12b22a1b1a2b2a22b12a12b22

a1b1a2b22a1a2b1b2a1b2a2b2右式

仅当即 a2b1a1b2 即

a1a2

时等号成立 b1b2

故n1,2时 不等式成立

(2)假设nkk,k2时,不等式成立 即 a1b1a2b2akbka1a2ak

k

b

2b2bkk

当 bikai,k为常数,i1,2n 或a1a2ak0时等号成立

222

设a1b12b22bk2 a2ak

Ca1b1a2b2akbk

2则ak1

bb

2k1

2k122ak1bk1

C22Cak1bk1ak1bk1Cak1bk1 2222a1a2akak1



b12

b22

k

b2

k

b

a1b1a2b2akbkak1bk1

当 bikai,k为常数,i1,2n 或a1a2ak0时等号成立

即nk1时不等式成立 综合(1)(2)可知不等式成立

柯西不等式是一个非常重要的不等式,灵活巧妙的应用运用它,可以使一些较为困难的问题迎刃而解,这个不等式结构和谐,应用灵活广泛,利用柯西不等式可处理以下问题: 1)证明相关命题

例1. 用柯西不等式推导点到直线的距离公式

3。

已知点x0,y0及直线l: xyC00



设点p是直线l上的任意一点,则

xxC0(1)

p1p2

(2)

点p1p2两点间的距离p1p2就是点p到直线l的距离,求(2)式有最小值,有

x0x1y0y1

x0y0Cx1y1C

由(1)

(2)得:

p1p2x0y0C即

p1p2

(3)

当且仅当y0y1:x0x1

p1p2l(3)式取等号 即点到直线的距离公式

p1p2

2)证明不等式

例2

4

a2b2c2

已知正数a,b,c满足abc1证明abc

证明:利用柯西不等式

a

b2c

13131

3a2a2b2b2c2c2

323232

a2b2c2abc

a3b3c3abcabc1

 ca又因为abcabbc在此不等式两边同乘以2,再加上abc

222得:abc3abc

222222



a2b2c2a3b3c33a2b2c2

a2b2c2

故abc

3)解三角形的相关问题

例3 设p是ABC内的一点,x,y,z是p到三边a,b,c的距离,R是ABC外接圆的证明:由柯西不等式得,

记S为ABC的面积,则

abcabc

axbycz2S2

4R2R

故不等式成立。4)求最值 例4

5

2222

已知实数a,b,c,d满足abcd3,a2b3c6d5试求a的最值

解:由柯西不等式得,有

2b

2111

3c26d2bcd

236

222

即2b3c6dbcd 2

由条件可得,5a3a

解得,1a

2时等号成立,11,d时,amax2 3621

b1,c,d时amin1

代入b1,c

5)利用柯西不等式解方程例5.在实数集内解方程

5

9222

xyz

4

8x6y24y39

解:由柯西不等式,得

x

222

y2z2862248x6y24y①



x2y2z286224



643641443924

又8x6y24y39

x

222

y2z2862248x6y24z



即不等式①中只有等号成立

从而由柯西不等式中等号成立的条件,得

xyz 8624

它与8x6y24y39联立,可得

x

6918yz 132613

67

6)用柯西不等式解释样本线性相关系数

在《概率论与数理统计》〉一书中,在线性回归中,有样本相关系数

(x)y

i

i

n

并指出r1且r越接近于1,相关程度越大,r越接

近于0,则相关程度越小。现在可用柯西不等式解释样本线性相关系数。现记aixi,biyi,则,ab

n

ii

r1

n

当r1时,abab

ii

2i

i1

i1

i1

nn

2i

此时,yibixiai

k,k为常数。点xi,yii1,2n均在直线

ykx上,r

当r1时,ab

ii

i1n

2i

n

n

a

i12i

n

2i

b

i1

n

2i

abab

ii

i1

i1

i1

n

0

aibia

i1

i1

n

n

2i

bi2

i1

n

1ijn

aibjajbi

1ijn

aibjajbi0aibjajbi0

bi

k,k为常数。ai

此时,此时,yibixiai

k,k为常数

点xi,yi均在直线ykx附近,所以r越接近于1,相关程度越大 当r0时,ai,bi不具备上述特征,从而,找不到合适的常数k,使得点xi,yi都在直线ykx附近。所以,r越接近于0,则相关程度越小。致谢:在本文的写作过程中,得到了马统一老师的精心指导,在此表示衷心的感谢。

参考文献:1柯西不等式的微小改动 J数学通报2002 第三期2柯西不等式与排序不等式M南山湖南教育出版社

3普通高中解析几何M高等教育出版社



41990-年全国统一考试数学试卷J

5李永新李德禄中学数学教材教法M东北师大出版社

6盛聚,谢式千,潘承毅概率与数理统计M高等教育出版7用用柯西不等式解释样本线性相关系数J数学通讯 2004年第七期

2004年6月

柯西不等式及应用含答案

一、柯西不等式:(a)(b)(akbk)2等号成立的条件是akbk(k1,2,3n)2k2kk1k1k1nnn二维柯西不等式:(x1x2y1y2)2(x12y12)(x22y22)证明:(用作差法)(x1y1)(x2y2)(x1x2y1y2)2x1y2x2y12x1x2y1......

柯西不等式的证明

柯西不等式的证明二维形式的证明(a^2+b^2)(c^2+d^2) (a,b,c,d∈R)=a^2·c^2 +b^2·d^2+a^2·d^2+b^2·c^2=a^2·c^2 +2abcd+b^2·d^2+a^2·d^2-2abcd+b^2·c^2=(ac+bd)^2+(ad-b......

利用柯西不等式证明不等式

最值1.求函数yx24x,(xR)的最小值。2.求函数yx4x2,(xR)的最小值。xR且x2y3.设21,求xy2的最大值4.设x,y,z为正实数,且x+y+z=10,求4x19yz的最小值。已知:x25.4y21 求:xy;2xy的取值......

柯西不等式

高中数学新课标选修4-5课时计划东升高中高二备课组 授课时间: 2007年 月 日(星期)第节 总第 课时第一课时3.1二维形式的柯西不等式(一)教学要求:认识二维柯西不等式的几种形式,......

柯西不等式证明(精选6篇)

第1篇:利用柯西不等式证明不等式最值1.求函数yx24x,(xR)的最小值。2.求函数yx4x2,(xR)的最小值。xR且x2y3.设21,求xy2的最大值4.设x,y,z为正实数,且x+y+z=10,求4x19yz的最小......

《柯西不等式的证明及应用.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
柯西不等式的证明及应用
点击下载文档
相关专题 关于柯西不等式的证明 证明 不等式 关于柯西不等式的证明 证明 不等式
[证明]相关推荐
[证明]热门文章
下载全文