例说一类与数列求和有关的不等式的证明方略_数列的计算与求和答案

2020-02-28 证明 下载本文

例说一类与数列求和有关的不等式的证明方略由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“数列的计算与求和答案”。

例说一类与数列求和有关的不等式的证明方略.李新伟

广东省南雄市第一中学 512400 摘 要:与数列求和有关的不等式在近年高考题中频繁出现,但却是考生感到困难的一类题目。这类题虽然无固定的模式和方法,但还是可以总结出若干解题方向和策略。主要有先求和后放缩、先放缩后求和策略。

关键词:数列;求和;不等式

1.考题频现考能力,细细品味有规循

近几年,形如“aiM(或aif(n)),aiM(或aif(n)),其

i1i1i1i1nnnn中M为常数”的与数列求和有关的不等式频频出现在各地高考或高考模拟试题中,而且常常是压轴题、创新题,如2004年全国卷三22(Ⅲ)、2005年辽宁19(2)、2006年全国Ⅰ理22(2)、2007年浙江理21(3)等等。由于这类题涉及多知识、多方法的交汇,条件与结论间的跨度大,解这类题常常要用到放缩法,而对解题方向的判断和放缩程度的把握要求高,能充分检测学生观察、分析、联想、灵活和综合运用所学知识分析解决问题能力,因此受到命题者青睐。学生面对这类试题往往感到难度大,无从入手,甚至有如坠云里雾里之感。

不过,虽然这类问题确有较大难度,但细心分析还是有规律可循。从解题方向上看主要有:(1)先求和再放缩 ;(2)先放缩再求和;(3)利用数学归纳法证明;(4)构造函数证明等。从解题策略上看,主要应重视对不等式结构特征和通项特征进行细微分析,初步明确证题方向。可先求和再放缩的题目,一般较简单;而需要先放缩再求和的题目一般难度较大,这类题往往要从待证的不等式出发,逆向探路,放缩转化,先变为等差数列求和、等比数列求和、裂项求和或错位相减法求和等我们熟悉的数列求和问题,最终通过适当的变形或放缩获证。2.执果溯因探路径,放缩求和巧证明 2.1先求和,再放缩证明

例1(2005年高考湖南(文)16)已知数列{log2(an1)}(nN)为等差数列,且a13,a39,(1)求数列{an}的通项公式;(2)证明

1。

a2a1a3a2an1an解:(1)过程略,an2n1(nN)。

(2)证明:∵对任意nN,恒有

111,n1nnan1an222∴111111123n

a2a1a3a2an1an222211[1()n]12 21()n1。

1212评析:对于与数列求和有关的不等式,若能先求和,我们常常会先求和,再考虑用放缩法证明。能先求和的这类题一般较简单,因此常为文科考题。2.2先放缩,再求和证明

对于求和困难的形如“aiM或aiM,其中M为常数”的不等式,i1i1nn很多情况下用数学归纳法也往往难于凑效。这时我们常用先放缩再求和证明或将其加强为形如aif(n)或aif(n)的不等式,再考虑用数学归纳法证明。

i1i1nn2.2.1逐项放缩,再求和证明

例2.已知函数f(x)x24,设曲线yf(x)在点(xn,f(xn))处的切线与x轴的交点为(xn1,0)(nN)。

(1)用xn表示xn1;(2)若x14,记anlgxn2,证明:数列{an}是等xn2比数列,并求数列{xn}的通项公式;(3)x14,bnxn2,Tn是数列{bn}的前n项和,证明:Tn3。

解:(1)过程略,xn1xn42(321)。(2)过程略,xn2n1。

2xn312n1 2

(3)由(2)知xnn12(323n11)12n1,于是bnxn2432n110。

bn132111112n12n12n1211, ∵bn3313133当n1时,显然T1b123,111当n1时,bnbn1()2bn2()n1b1,333∴Tnb1b2bn11b1[1()n]1113b1b1()n1b133()n3

133313综上可得,对于任意nN,Tn3。

评析:考虑到数列{bn}的通项公式中有指数式,而待证不等式右边为常数,于是联想到等比数列求和问题,我们尝试利用递推放缩的方法构造等比数列。将非特殊数列向特殊数列转化,这是本文的一个主体思想和关键策略。2.2.2局部放缩,再求和证明

例1(3)也可以采取局部放缩,再求和证明。

另证:易得b12,b2时,bn432n111141,于是猜想当n3b32,b483,22023121412n1。

132n1由于32n132n1112n1112n132n12n11,所以下面只需证2n11。下面利用二项式定理证明:

因为当n3,nN时,01n1∵2n1(11)n1Cn1Cn1Cn11n11n1,∴32n10n11nn1n13n1(21)n1CnCn1。1212Cn12所以,当n1时,显然T1b123; 当n2,Tnb1b2bn21112n1 222 3

11[1()n1]123()n13。221212故对于任意nN,Tn3。

评析:从数列{bn}的通项结构我们猜想应将{bn}放缩为一个等比数列。通过计算,我们从第三项开始通过放缩发现了数列{bn}的项所呈现的规律性,对于本题的证明,这是重大突破。此外,本题从第3项开始放缩,恰当使用了局部放缩。G.波利亚曾说:“先猜,后证——这是大多数的发现之道。”先猜后证,也是我们常用的数学解题方法和策略。2.2.3并项放缩,再求和证明

例3.由原点O向已知的三次曲线yx33x2bx引切线,切于不同于点O的点P1(x1,y1),再由P1引此曲线的切线,切于不同P1的点P2(x2,y2),如此继续作下去,„„,得到点列{Pn(xn,yn)}(nN)。试解答下列问题:

(1)求x1的值;(2)求数列{xn}通项公式;(3)若bn前n项和,求证:Sn1。

解:(1)过程略,易得x131。(2)过程略,易得xn1()n(nN)。221,Sn是数列{bn}2nxn1(3)∵xn1()n,2111n∴bnn。n12(1)2xn2n[1()n]22n2n11n1n当n为偶数时,bn1bnn1 nnn122221212112n2n1n1n,n12221又当n2时,2n121,即2n110,于是

2n2n111bn1bnn1nn1n,2222

∴Snb1b2bn(b1b2)(b3b4)(bn1bn)

11[1()n]11111112(2)(34)(n1n)21n1。

1222222212当n为奇数时,因为bn10,n1偶数,所以有 n2xnSnb1b2bnb1b2bnbn1

111111(b1b2)(b3b4)(bnbn1)(2)(34)(nn1)

22222211[1()n1]1221n11。

1212综上可知,Sn1。

评析:由于数列{bn}的通项公式的分母中有随n的奇偶+1与-1交替出现的项,于是单项放缩困难,而采取奇偶项并项放缩,则恰好利用其奇偶项特点,成功放缩。

例4.已知数列{an}和{bn}满足a12,an1an(an11),bnan1,Sn是数列{bn}前n项和。

(1)求数列{bn}的通项公式;(2)设TnS2nSn,求证:Tn1Tn;(3)求证:对任意的nN,有1解:(1)过程略,bnn1S2nn。221。(2)证明略。n(3)方法一(数学归纳法),略。

方法二(并项放缩法):

当n1时,S2n11; 2

当n2,nN时,S2nb1b2b2n1111111111n 234567892 5

1111111111()()(n1n1n)23456782122211111111111()()(nnn)

244888822211111222232n1n

2222111n11,22221另一方面,S2nb1b2b2n1111111111n 234567892

11111111111111()()()(n1n1n)23456789101621222

11111111111111()(2222)(333)(n1n1n1)***111122222332n1n1 22222111(n1)n,22n1综上可知,对任意的nN,有1S2nn。

22评析:从待证不等式的特点和项数两方面产生了并项放缩的想法。并项放缩常常涉及如何并项、怎样放缩等问题,因此,并项放缩比逐项放缩往往难度更大,要求更高。

2.2.4构造放缩,再求和证明 例5.在数列{an}中,an11,求证a1a2a50。

(2n1)(2n2)4证明:由题设,a1a2a50111。3456101102111111设S,构造T。显34561011022345100101然ST。

111111 2334455610010110110211111111111()()()(),***221022∴2STS 6

故S11,即a1a2a50。

评析:本题虽然可先裂项,但不便求和,证明受阻。利用对偶式进行构造性放缩后,巧妙实现了裂项求和,证明简捷明快,赏心悦目。

例6.设函数f(x)lnxpx1(pR),(1)求f(x)极值点;

(2)当p0时,若对于任意的x0,恒有f(x)0,求p的取值范围;

ln22ln32lnn22n2n1(3)证明:当nN,n2时,222。

2(n1)23n解:(1)f(x)的定义域为(0,)。当p0时,f(x)1 p0,f(x)在其定义域上是增函数,故没有极值点。

x111px当p0时,若x(0,),则f(x)0;若x(,),则

ppxf(x)11px0,于是f(x)有极小值点x。

px11(2)由(1)知,p0时,f(x)有极小值点f()ln,由于f(x)在其

pp11定义域上只有一个极值点,因此f(x)的最大值为f()ln。所以

ppf(x)0ln10p1。p(3)由(2)知,当p1,x0时,f(x)0lnxx1ln22ln32lnn2111于是222(12)(12)(12)

23n23nlnx1 1。

xx (n1)(又当nN,n2时,111)。22223n1111,于是 2(n1)nnn1n 7

11111111111,()()()2334nn12n12232n2ln22ln32lnn2111∴222(n1)(222)

23n23n2n2n111 (n1)(,)2(n1)2n1ln22ln32lnn22n2n1即222。

2(n1)23n评析:导数进入中学数学后,为中学不等式证明提供了一个强大工具。正因为如此,通过构造函数并利用导数证明不等式已成为高考数学试题中一道亮丽的风景线。本题第(2)问实际上已经作出暗示,对比待证不等证式与第(2)问所得结论,证明思路自然生成。

强化命题证明一类数列不等式

该文发表于《中学数学教学参考》2006年第12期强化命题证明一类数列不等式201203华东师大二附中任念兵数列不等式是近年来高考和竞赛中的热点题型,其中一类形如in0n1C(C为常数)a......

数列与不等式证明专题

数列与不等式证明专题复习建议:1.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条......

数列不等式推理与证明

2012年数学一轮复习精品试题第六、七模块 数列、不等式、推理与证明一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等比数......

证明数列求和不等式的两种放缩技巧

证明数列求和不等式的两种放缩技巧江苏省包场高级中学张巧凤226151数列求和不等式的证明,历来是高考数学命题的热点与重点,并且往往出现在压轴题的位置上,扮演着调整试卷区分度......

数列求和说课

数列求和说课一、教学内容:数列求和是高考中的必考内容,在高考中占据着非常重要的地位,学好数列求和对于高考成功起着非常关键的作用。数列求和方法中涵盖有倒序相加法、错位相......

《例说一类与数列求和有关的不等式的证明方略.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
例说一类与数列求和有关的不等式的证明方略
点击下载文档
相关专题 数列的计算与求和答案 证明 不等式 数列 数列的计算与求和答案 证明 不等式 数列
[证明]相关推荐
[证明]热门文章
下载全文