放缩法与数列不等式的证明_放缩法证明数列不等式
放缩法与数列不等式的证明由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“放缩法证明数列不等式”。
2017高三复习灵中黄老师的专题
放缩法证明数列不等式
编号:001 引子:放缩法证明数列不等式历来是高中数学的难点,在高考数列试题中经常扮演压轴的角色。由于放缩法灵活多变,技巧性要求较高,所谓“放大一点点太大,缩小一点点太小”。为了揭开放缩法的神秘面纱,黄老师特开设这一专题,带领大家走近“放缩法”。一.放缩法证明不等式的理论依据: 1.不等式的传递性:
2.同向不等式的可加性:
3.同向的正数不等式的可乘性:
二.常见的数列求和的方法及公式特点: 1.等差数列的和;an_____sn______(nN)2.等比数列的和:ankqn,sn3.错位相减法:等差×等比
4.裂项相消法:若anan1d(d为常数)在三.常见题型分析:
1.放缩目标模型:可求和 1.1等差模型
1111()(nN)
anan1dan1ana1(1qn)(q1)(nN)1qn(n1)n(n2)1223...n(n1)例1.(1985全国卷)求证:(nN)22
n(n1)n(n3)1223...n(n1)变式:(nN)22
1.2等比模型
1111例2.求证:23....n1(nN)2222
变式.求证:1121112231......2n11(nN21)
例3.(2014全国卷Ⅱ1an满足a11,an13an1,1)证明:a1n2是等比数列.并求an的通項公式 2)证明:1a113a.......12an2
变式:求证:1211211152231......2n13(nN)
例4.(2002全国卷理22题7题)第2问已知数已知数列
列(()an满足an1an2nan1,n1,2,3.......当a13时,证明对所有的n1,nN(1)ann2(2)证明:1a11a.......11121an12
1.3错位相减模型
例5.求证:12123n222233.......2nn2(nN)
1.4裂项相消模型
例2(2013广东文19第(3)问)求证:11313515711(2n1)(2n1)2
11111例6.证明:n12n12232......n2n(nN)
(nN)
111变式1.证明:122......22(nN)
变式2.证明:
变式3.证明:
变式4.证明:
变式5.证明:
23n 111172232......n24(nN)112115232......n24(nN)1213......1n2n(nN)1113252......(2n1)232
1115变式6.证明:122......235(2n1)4
常见的放缩技巧总结:
放缩法证明数列不等式基础知识回顾:放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用源。......
放缩法证明不等式1、设数列an的前n项的和Sn43an132nn123(n1,2,3,)n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tnan42nn2Sn(n1,2,3,),证明:Tii132解:易求SnTn(其中n为正整数)23nn432nann132n1434n23n......
放缩法证明数列不等式主要放缩技能: 1.2 nn1n(n1)nn(n1)n1n1144112()22n4n1(2n1)(2n1)2n12n1n242. 2) 4.2n2n2n1115.n (21)2(2n1)(2n2)(2n1)(2n11)2n112n16.n22(n1)n......
放缩法证明不等式在学习不等式时,放缩法是证明不等式的重要方法之一,在证明的过程如何合理放缩,是证明的关键所在。现例析如下,供大家讨论。 例1:设a、b、c是三角形的边长,求证abc......
主备人:审核:包科领导:年级组长:使用时间:放缩法证明不等式【教学目标】1.了解放缩法的概念;理解用放缩法证明不等式的方法和步骤。2.能够利用放缩法证明简单的不等式。【重点、难......
