66弦切角定理_弦切角定理怎么证明
66弦切角定理由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“弦切角定理怎么证明”。
6.6弦切角定理
一、教学目标
1.掌握弦切角定义,能说出弦切角定理的内容,会直接应用这些内容解决简单问题;
2.理解定理的证明,并会解释定理的应用;
3.能独立完成定理证明,并会灵活运用定理解决有关证明与计算问题;
4.通过定理教学,了解数学的化归思想、分类思想以及特殊到一般的数学思想。
二、教材分析
重点:弦切角概念的理解,弦切角定理及其推论的发现和应用。
难点:弦切角定理的发现及证明。
三、教法设想
利用建钩主义教学理论,构建“问题——探究——解答——结论——问题——探究”过程,引导学生主动建构新知。
四、学法指导
通过创设情境,留给学生一席观察、想象、假设、验证的空间,指导学生主动探索和研究,发现新知;通过变式训练和开放结论,培养学生的创新精神。
五、教具选择
多媒体电脑、投影机、投影仪各一台,弦切角活动教具。
六、过程设计
1.弦切角课题的引入
——引导学生亲自演示活动教具:
移动圆周角的一条边,产生无数个圆周角,当动边移至与圆相切位置时,停止移动,共同研究这个角的特性。
——全体学生共同分析,并仿照圆心角、圆周角给这个特殊角命名。
——学生猜出这样的角叫弦切角后,教师板书课题:6.6弦切角定理。
2.弦切角概念的定义
——教师操纵计算机,进入圆周角变成弦切角的程序。
——学生动手,将观察与感知到的图形画到纸上。
——全体学生对自己画出的弦切角进行研究。
——启发学习上有困难的学生归纳总结,得出弦切角概念的内涵:①顶点在圆周上;②一边与圆相交(弦)③另一边与圆相切。
——提问中等生用数学语言给弦切角概念下定义。
——要求全体学生会解释弦切角定义,明确构成弦切角的三个必要条件。
——以反例巩固定义:
说明弦切角定义中的三个条件缺一不可。
这一段的教学结构是:观察现象——画出图形——揭示属性——通过反例——巩固属性,突出了事实形成的过程。
3.概念分类
——
一个圆的弦切角有无数多个,我们不可能也不必要对这无数多个弦切角逐一研
究,只要进行分类即可。结合证明圆周角定理的分类,你能把弦切角分类吗? ——请一位基础较好的学生说出分类的初步想法。
——全体学生根据这种想法分类,画出弦切角的分类图。
——全体学生分组讨论分类标准。
——由基础较好的学生总结分类标准:即以圆心与弦切角的位置关系决定:在角的一边(弦)上,还是在角的外部或内部。
通过类比迁移,新知转化为旧知。
4.对弦切角定理的探索
——投影仪显示弦切角的特殊情况,如图
——学生观察图形特点,发现此时弦切角是直角,与其所夹
弧的度数为180°。
——由一名中等生解释为什么。
全体学生书面证明圆心在弦切角一条边(直径)上时,得到
弦切角等于它所夹弧度数的一半的结论。
——由特殊猜出结论后,教师提出质疑:特殊情况成立能否推断一般情况也成立,我们下一步应该研究什么?
——由定义和圆周角定理的证明,联想下一步的教学应考虑圆心不在弦切角一条边上的情况。
——计算机显示圆心在弦切角外部和圆心在弦切角内部的两种图形。
——学生分组讨论:怎样实现将一般情况的证明转化为特殊情况。
将知识的形成过程由学生自己给出,使他们具有成就感。
在讨论的过程中既含有分类的数学思想方法,同时也体现了证明数学命题由特殊到一般的思想方法。
5.弦切角定理的推广
问题:从弦切角概念产生的过程,你能说明与弦切角所夹的弧对着的圆周角之间的关系吗?比较说明他们的异同点。
推论:弦切角等于它所夹弧所对的圆周角。
6.概念与定理的应用 ——投影屏幕显示一组判断题:判断正误
⑴圆心角与它的夹弧所对的弦切角相等; ⑵所有的弦切角都小于180°;
——投影屏幕显示图形
⑴图中有几个弦切角?
⑵图中有几个圆周角?
⑶找出具有相等关系的角,并说明理由;
⑷如果∠ABC=40°,求∠BAC、∠BCM、∠CAN、∠BCN和弧BC、AC的度数; ⑸你能根据这个图形自编一道题吗?
在题目的设计上分层次要求,⑸是开放性题目,有利于发展学生的创造性思维。题目的内容,使新旧知识建立了联系,是对本节教学目标的检查与评价。
——书本例2及改编
如图,AD是△ABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F。求证:①EF∥BC
②若AD与EF交于点G,求证:AF·FC=GF·DC(2001年河南省中考题)(设计意图:培养学生发散思维能力和创新能力)
7.应用知识促巩固(练习见课本P.66-67)
8.小结全文构体系
这节课研究了弦切角的有关知识,通过学习,我们知道在圆中研究角的相互关系时,若有切线的条件,就可考虑应用弦切角定理,为我们解决问题提供了方便。9.布置作业
(1)作业本(全班做)
(2)将例2改编为
③求证:AB·DC=AC·BD
④若FD、AB延长线交于M。求证:DM2BMAM
⑤若DE=32,DC+CF=6,AE∶AF=3∶2,求EG的长。(学有余力的同学做)王松萍
2002.5
高二数学(文)选修4-1编写:杨社锋编号:07-08教研组长:贾敏 教研室主任:田土娟校审:王宏奇弦切角定理学习目标:理解弦切角定理的推导过程,掌握切线长定理、弦切角定理的内容及其推论 学......
4.2.3-4.2.4圆的切线判定定理与性质定理3.如图,AB是⊙ O的弦, AD是⊙ O的弦切角定理考纲要求:会证明和应用以下定理:圆的切线判定定理与性质定理和弦切角定理 一:知识梳理1.切线......
弦切角练习1 直线AB和圆相切于点P,PC,PD为弦,指出图中所有的弦切角以及它们所夹的弧.练习2 如图,DE切⊙O于A,AB,AC是⊙O 的弦,若=,那么∠DAB和∠EAC是否相等?为什么?分析:由于 和 分别......
弦切角定理证明(推荐11篇)由网友“橘义茗”投稿提供,下面是小编为大家汇总后的弦切角定理证明,仅供参考,欢迎大家阅读,希望可以帮助到有需要的朋友。篇1:弦切角定理证明 编辑本段弦......
弦切角定理证明方法(1)连OC、OA,则有OC⊥CD于点C。得OC‖AD,知∠OCA=∠CAD。而∠OCA=∠OAC,得∠CAD=∠OAC。进而有∠OAC=∠BAC。由此可知,0A与AB重合,即AB为⊙O的直径。(2)连接BC......
