空间几何证明_空间几何证明题

2020-02-28 证明 下载本文

空间几何证明由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“空间几何证明题”。

立体几何中平行、垂直关系证明的思路

平行垂直的证明主要利用线面关系的转化:

线∥线线∥面面∥面性质

判定线⊥线线⊥面面⊥面

线∥线线⊥面面∥面

线面平行的判定:

a∥b,b面,aa∥面

a b 

线面平行的性质:

∥面,面,ba∥b

三垂线定理(及逆定理):

PA⊥面,AO为PO在内射影,a面,则

a⊥OAa⊥PO;a⊥POa⊥AO

P O a

线面垂直:

a⊥b,a⊥c,b,c,bcOa⊥

a O α b c

面面垂直:

a⊥面,a面⊥

面⊥面,l,a,a⊥la⊥

α a l β

a⊥面,b⊥面a∥b

面⊥a,面⊥a∥

a b 

定理:

1.如果一条直线上的两点在一个平面内,那么这条直线在此平面内。作用:判断直线是否在平面内;证明点在平面内;检验平面。2.过不在一条直线上的三点,有且只有一个平面。

作用:确定平面;判断两个平面是否重合;证明点线共面。推论:a.经过一条直线和这条直线外的一点,有且只有一个平面;

b.经过两相交直线,有且只有一个平面;

c.经过两条平行直线,有且只有一个平面。

3.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

作用:a.判定两个不重合平面是否相交;

b.判断点在直线上。

4.平行于同一条直线的两条直线互相平行。(平行线的传递性)。5.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。6.(直线与平面平行的判定定理)

平面外一条直线与此平面内的一条直线平行,则该直线与该平面平行。条件:a.一条直线在平面外;

b.一条直线在平面内;

c..这两条直线互相平行。7.(平面与平面平行的判定定理)

一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。条件:a.两条相交直线;

b.相交直线在一个平面内;

c.对应平行。

8.(直线与平面平行的性质定理)

一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

条件:a.一条直线与一个平面平行;

b.过这条直线的任一个平面与此平面相交;

c.交线与直线平行。9.(平面与平面平行的性质定理)

如果两个平行平面同时和第三个平面相交,那么它们的交线平行。条件:a.两个平行平面:平面1和平面2和第三个平面:平面3

b.平面1与3相交,平面2与3相交

c.交线平行

点、线、面的相关证明

一.多点共线和多线共点问题证明

方法:公理3的熟练应用;两个相交平面有且只有一条公共直线。

1.如下图,在四边形ABCD中,已知AB//CD,直线AB,BC,AD,DC分别与平面α相交于点E,F,G,H。求证:E,F,G,H四点必定共线。

2.如图所示,在正方体ABCD-A1B1C1D1中,设线段A1C与平面ABC1D1交于Q.求证:B,Q,D1三点共线。

3.在正方体ABCD-A1B1C1D1中,E为AB 的中点,F为AA1的中点,求证:

a.E,C,D1,F四点共面;

b.CE,D1F,DA三线共点。

二.计算异面直线所成角度

方法:平移法和辅助线(中位线)构造角度

1.直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角度为______________.2.如图所示,正四棱锥P-ABCD的底面面积为3,体积为√2/2,E为侧棱PC的中点,则PA与BE 所成的角为____________.3.如图所示,正三棱锥S-ABC(侧面为全等的等腰三角形,底面为正三角形)的侧棱长与底面边长相等,E、F分别是SC、AB的中点,异面直线EF与SA所成的角为____________.4.如下图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2√2,PA=2.求:(1)三角形PCD的面积;

(2)异面直线BC与AE所成的角的大小.5.在正方体ABCD—A1B1C1D1中,M、N、P、Q分别是棱AB、BC、CD、CC1的中点,直线MN与PQ所成的度数_______________.

空间几何——平行与垂直证明

三、“平行关系”常见证明方法(一)直线与直线平行的证明1) 利用某些平面图形的特性:如平行四边形的对边互相平行2) 利用三角形中位线性质3) 利用空间平行线的传递性(即公理4):平行......

空间几何问题

用空间直角坐标系求解空间几何问题:求解(4种)①两直线的夹角:求他们的向量,用夹角公式(会吧)求余弦。②线面角:求线与平面的法向量的向量,用夹角公式求余弦,即线面角的正弦。③二面角:......

空间与几何

1、“问题情景――建立模型――解释、应用与拓展、反思”2、自主探索,合作交流与实践创作3、合情推理必要性基本过程综合法4、我国大纲与教材的历次变革,“几何”课程的内容和......

几何证明

2013几何证明1.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,在ABC中,C900,A600,AB20,过C作ABC的外接圆的切线CD,BDCD,BD与外接圆交于点E,则DE的长为__________......

几何证明

几何证明1.如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o,求∠EAD、∠DAC、∠C的度数2.已知∠BED=∠B+∠D,试说明AB与CD的位置关系3.如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。4.如......

《空间几何证明.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
空间几何证明
点击下载文档
相关专题 空间几何证明题 证明 几何 空间 空间几何证明题 证明 几何 空间
[证明]相关推荐
[证明]热门文章
下载全文