一轮复习等差等比数列证明练习题_等差等比数列复习题

2020-02-28 证明 下载本文

一轮复习等差等比数列证明练习题由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“等差等比数列复习题”。

本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

1.已知数列an是首项为a1,公比q141的等比数列,bn23log1an 44(nN*),数列cn满足cnanbn.

(1)求证:bn是等差数列;

2ana2,aa6a6(nN),n1nn2.数列满足1设cnlog5(an3).

(Ⅰ)求证:cn是等比数列;

*3.设数列an的前n项和为Sn,已知a12a23a3nan(n1)Sn2n(nN).(2)求证:数列Sn2是等比数列; 4.数列{an}满足a11,an12n1an(nN)nan22n(1)证明:数列{}是等差数列;

an2Sn25.数列an首项a11,前n项和Sn与an之间满足an(n2)

2Sn1(1)求证:数列1是等差数列

Sn2,an16.数列{an}满足a13,an1(1)求证:{an1}成等比数列; an2*7.已知数列{an}满足an13an4,(nN)且a11,(Ⅰ)求证:数列an2是等比数列;

答案第1页,总5页 本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

8. 数列{an}满足:a11,nan1(n1)ann(n1),nN*(1)证明:数列{an}是等差数列; n9.已知数列{an}的首项a1=

22an,an1,n=1,2,… 3an1(1)证明:数列11是等比数列; an1,Snn2ann(n1),n1,2,L. 210.已知数列{an}的前n项和为Sn,a1(1)证明:数列n1Sn是等差数列,并求Sn; n11.(16分)已知数列{an}的前n项和是Sn,且Sn2ann(1)证明:an1为等比数列;

12.数列{an}满足:a12,a23,an23an12an(nN)(1)记dnan1an,求证:数列{dn}是等比数列;

13.已知数列{an}的相邻两项an,an1是关于x方程x22nxbn0的两根,且a11.(1)求证:数列{an2n}是等比数列;

14.(本题满分12分)已知数列{an}中,a15且an2an12n1(n2且nN*). 13a1(Ⅰ)证明:数列nn为等差数列;

215.已知数列an中,a11,an1an(nN*)an3(1)求证:11是等比数列,并求an的通项公式an;an235,a3,且当n2时,2416.设数列an的前n项和为Sn,n.已知a11,a24Sn25Sn8Sn1Sn1.

(1)求a4的值;

答案第2页,总5页 本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

(2)证明:an11an为等比数列; 217.设数列an的前n项和为Sn,且首项a13,an1Sn3n(nN).n(Ⅰ)求证:Sn3是等比数列; 18.(本小题满分10分)已知数列an满足a11,an1a2(1)求证:数列n是等比数列;

n(3n3)an4n6,nN*.

n

参考答案

1.(1)见解析;(2)Sn2(3n2)1n();(3)m1或m5 3342n12.(Ⅰ)见解析;(Ⅱ)3.(1)

an511Tn2n.3.;459(Ⅲ)a24,a38;

(2)见解析;(3)5

2nn14.(1)详见解析;(2)an;(3)2n326

n11(n1)23. 5.(1)详见解析;(2)an;(3)2(n2)3(2n1)(2n3)6.(1)证明{an1}成等比数列的过程详见试题解析; an2答案第3页,总5页 本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

(2)实数t的取值范围为7.详见解析

8.(1)见解析;(2)Sn1331. t222n13n13 49.(1)详见解析(2)Sn21nnn1 2n12n2210.(1)由Snn2ann(n1)知,当n2时,Snn,即(SnS(n1)n1)n(n21)Snn2Sn1n(n1),所以所以n1n11SnSn11,对n2成立.又S11,nn11n1n1Sn1(n1)1,即Sn是首项为1,公差为1的等差数列.所以nnn2Sn.

n1(2)因为

bnSn1111()32n3n(n1)(n3)2n1n3,所以b1b2Lbn. 11111111115115(L)()22435nn2n1n326n2n312k18k6k411.(1)见解析;(2)解析;(3)存在,或或.

m5m2m1812.(1)dn12n1(2)an2n11

2n12n为偶数3313.(1)见解析;(2)Sn,(3)(,1)

n121n为奇数3314.(Ⅰ)详见解析(Ⅱ)Snn2n1 15.(1)证明详见解析;(2)23.

7116.(1);(2)证明见解析;(3)an2n18217.(Ⅰ)详见解析;(Ⅱ)(9,3)(3,)

n1.

答案第4页,总5页 本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

18.(1)详见解析(2)详见解析

答案第5页,总5页

一轮复习等差等比数列证明练习题

Fpg1.已知数列an是首项为a1,公比q141の等比数列,bn23log1an 44(nN*),数列cn满足cnanbn.(1)求证:bn是等差数列;2ana2,aa6a6(nN), n1nn2.数列满足1设cnlog5(an3).(Ⅰ)求证:cn是等比数列;*3.设数......

等差等比数列综合练习题

等差数列等比数列综合练习题一.选择题1.已知an1an30,则数列an是 ( )A.递增数列 B.递减数列 C.常数列 D.摆动数列 2.等比数列{an}中,首项a18,公比q,那么它的前5项的和S5的值是( ) A.313......

等差等比数列的证明

专题:等差(等比)数列的证明1.已知数列{a}中,anan15且2an12n1(n2且nN*).an1(Ⅰ)证明:数列2n为等差数列;(Ⅱ)求数列{an}的前n项和S.n2.已知数列{a}中,an12且an1an2n30(n2且nN*).证明:数列an2n......

等差等比数列

等差数列 a1, a1d, a12d, …… a1(n1)d等差数列求和a1a2a3ana1a1da12da1(n1)dn(a1an)n(n1)na1d 22n(1n) 2特例:123n等比数列 a1,a1q,a1q2,,a1qn1等比数列求和a1a2a3ana1a1qa1......

等差与等比数列综合专题练习题

1.数列{an}是等差数列,若值时,n=()A.11a<-1,且它的前n项和Sn有最大值,那么当Sn取得最小正a10anB.17C.19D.21 2.已知公差大于0的等差数列{求数列{an}的通项公式an. }满足a2a4+a4a6+a6a2=1,a2,a4......

《一轮复习等差等比数列证明练习题.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
一轮复习等差等比数列证明练习题
点击下载文档
相关专题 等差等比数列复习题 证明 等比数列 等差 等差等比数列复习题 证明 等比数列 等差
[证明]相关推荐
[证明]热门文章
下载全文