2.5.1平面几何中的向量方法(教学设计)_空间向量立体几何教案

2020-02-27 教学设计 下载本文

2.5.1平面几何中的向量方法(教学设计)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“空间向量立体几何教案”。

SCH高中数学(南极数学)同步教学设计(人教A版必修4第二章《平面向量》)

2.5.1平面几何中的向量方法(教学设计)

[教学目标]

一、知识与能力:

1.运用向量方法解决某些简单的平面几何问题.二、过程与方法:

经历用向量方法解决某些简单的平面几何问题;体会向量是一种处理几何问题的工具;发展运算能力和解决实际问题的能力.三、情感、态度与价值观:

培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题;树立学科之间相互联系、相互促进的辩证唯物主义观点.[教学重点] 运用向量方法解决某些简单的平面几何问题.[教学难点]

运用向量方法解决某些简单的平面几何问题

一、复习回顾 1. 向量的概念;

2. 向量的表示方法:几何表示、字母表示; 3. 零向量、单位向量、平行向量的概念;

4. 在不改变长度和方向的前提下,向量可以在空间自由移动; 5. 相等向量:长度(模)相等且方向相同的向量; 6. 共线向量:方向相同或相反的向量,也叫平行向量.7. 要熟练地掌握向量加法的平行四边形法则和三角形法则,并能做出已知两个向量的和向量; 8. 要理解向量加法的交换律和结合律,能说出这两个向量运算律的几何意义; 9. 理解向量减法的意义;能作出两个向量的差向量.10. 理解实数与向量的积的意义,能说出实数与一个向量的积这与个向量的模及方向间的关系; 11. 能说出实数与向量的积的三条运算律,并会运用它们进行计算; 12. 能表述一个向量与非零向量共线的充要条件; 13. 会表示与非零向量共线的向量,会判断两个向量共线.二、师生互动,新课讲解

由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图像的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来.因此可用向量方法解决平面几何中的一些问题.例1: 证明:对角线互相平分的四边形是平行四边形.SCH高中数学(南极数学)同步教学设计(人教A版必修4第二章《平面向量》)

证明:设四边形ABCD的对角线AC、BD交于点O,且AOOC,BOOD.AB12AC1112DB,DC2DB2AC,ABDC, 即ABDC且AB//DC所以四边形ABCD是平行四边形,即对角线互相平分的四边形是平行四边形.变式训练1:已知DE是ABC的中位线,用向量的方法证明:DE12BC,且DE//BC.证明:易知AD12AB,AE12AC,所以DEAEAD12ACAB12BC.即DE12BC,又D不在BC上,所以DE//BC.例2: 用向量方法证明:三角形三条高线交于一点.证明:设H是高线BE、CF的交点,且设ABa,ACb,AHh则有BHha,CHhb,BCba,BHAC,CHAB,ha·bhb·a0

化简得,h·ba0AHBC所以,三角形三条高线交于一点.变式训练2:证明勾股定理,在RtABC中,ACBC,BCa,ACb,ABc,则c2b2a2.证明:由ABACCB,得BAB·ABAC·AC2AC CBCBCB即|AB|2|AC|20|CB|2,故c2b2a2.CA

例3:(课本P109例1)已知平行四边形ABCD的对角线为AC、BD.求证:|AC|2|DB|22|AB|2|AD|2 2

SCH高中数学(南极数学)同步教学设计(人教A版必修4第二章《平面向量》)

证明:由|AC|2ACABAD22|AB|2|AD|22AB AD|DB|2DBABAD2,2

|AB|2|AD|22AB AD得|AC|2|DB|22|AB|2|AD|2.变式训练3:用向量方法证明:对角线相等的平行四边形是矩形.解:如图,四边形ABCD对角线AC、BD交于点O,ABAOOB,ADAOOD,AB·ADAOOB·AOOD2DOC

AAOAO·ODOB·AOOB·OD0ABAD,即ABAD,四边形ABCD是矩形.B

三、课堂小结,巩固反思:

向量是沟通数与形的十分有效的工具,利用向量处理平面几何问题,最重要的是要先在平面图形中寻找向量的“影子”,然后合理引入向量,并通过向量的运算,达到快捷解题的效果.四、课时必记:

五、分层作业: A组:

1、(课本P118复习参考题 A组:NO:5)

2、(课本P118复习参考题 A组:NO:6)

3、(课本P118复习参考题 A组:NO:7)

4、(课本P118复习参考题 A组:NO:8)

5、(课本P118复习参考题 A组:NO:9)B组:

1、(课本P113习题2.5 A组NO:1)

2、(课本P113习题2.5 A组NO:2)SCH高中数学(南极数学)同步教学设计(人教A版必修4第二章《平面向量》)

3、用向量方法证明:对角线互相垂直的平行四边形是菱形.证明:如图平行四边形ABCD,对角线AC、BD交于点O,ABAOOB,BCBOOC|AB|2AOOB2|AO|22AO OBOB2|AO2OB2

|BC|2BOOC2|BO|22BO OC|OC|2|BO|2|OC|2,|AB||BC|,四边形ABCD是菱形.C组:

DCOAB4

2.5.1平面几何中的向量方法(教案)

2.5平面向量应用举例 2.5.1平面几何中的向量方法教学目标1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”.2.明了平面几何图形中的有......

5.1 向量

1.向量的定义既有方向,又有大小的量叫做向量.它一般用有向线段表示.AB表示从点A到B的向量(即A为起点,B为终点的向量),3、下列四个命题:①若||=0,则=0;②若||=||,则=或=-;③若与是平行向......

立体几何中的向量方法的教学设计

《立体几何中的向量方法》的教学设计一、教材分析本节课是坐标法与向量有效结合的典型范例,有利于培养学生利用向量解决立体几何问题的能力。二、教学目标通过类比平面内的点......

平面几何中常见结论的向量证法

平面几何中常见结论的向量证法例1.证明直径所对的圆周角是直角.如图所示,已知⊙O,AB为直径,C为⊙O上任意一点.求证∠ACB=90°.证明:设AOa,OCb,由已知得|a|=|b|, 则ACBC(ab)(ab)a......

3.2立体几何中的向量方法 教学设计 教案

教学准备1. 教学目标(1)知识与技能:理解直线的方向向量和平面的法向量;会用向量及其运算表示线线、线面、面面间的位置关系.(2)过程与方法:在解决问题中,通过数形结合的思想方法,加深......

《2.5.1平面几何中的向量方法(教学设计).docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
2.5.1平面几何中的向量方法(教学设计)
点击下载文档
相关专题 空间向量立体几何教案 教学设计 平面几何 向量 空间向量立体几何教案 教学设计 平面几何 向量
[教学设计]相关推荐
[教学设计]热门文章
下载全文