含绝对值的不等式解法(总结归纳)_含绝对值的不等式总结

2020-02-28 其他工作总结 下载本文

含绝对值的不等式解法(总结归纳)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“含绝对值的不等式总结”。

含绝对值的不等式解法、一元二次不等式解法

[教材分析] |x|的几何意义是实数x在数轴上对应的点离开原点O的距离,所以|x|0)的解集是

{x|-aa(a>0)的解集是{x|x>a或xa(a>0)中的x替换成ax+b,就可以得到|ax+b|c(c>0)型的不等式的解法。

一元二次不等式ax2+bx+c>0(或0的解,图象在x轴下方部分对应的x值为不等式ax2+bx+c

求解以上两种不等式的方法,就是将不等式转化为熟悉,可解的不等式,因此一元二次不等式的求解,也可采用以下解法。

x2+3x-4

原不等式解集为{x|-4

x2+3x-4

(x+)2

|x+|

原不等式解集为{x|-4

[例题分析与解答]

例1.解关于x的不等式|ax-2|

[分析与解答]:|ax-2|0)型。∴-4

当a>0时,-

当ax>,当a=0时,不等式化为2

故a>0时不等式解集是{x|-

例2.解不等式|x-3|-|2x+3|≥2。

[分析与解答] 去掉绝对值需要确定绝对值内代数式的值的符号,符号的正与负是以0为分界点,所以x=3和

x=-是绝对值内两个代数式值的符号的分界点。用3和-将全体实数划分成三个区间,则在每一个区间上都可确定去掉绝对值的结论,由此分情况求解。

(1)

-4≤x

(2)

-≤x≤-。

(3)。

综上,原不等式的解集为{x|-4≤x

例3.解关于x的不等式x2+(2-a)x-2a

[分析与解答] 设y=x2+(2-a)x-2a,其表示的抛物线开口向上,Δ=(2-a)2-4(-2a)=(2+a)2≥0,抛物线与x轴相交或相切,方程x2+(2-a)x-2a=0的两个根是-2或a。下面只需确定两个根的大小关系,就可以写出不等式的解集。

x2+(2-a)x-2a

(x+2)(x-a)

当a>-2时,原不等式解集是{x|-2

例4.已知不等式ax2+bx+c>0的解是-3

[分析与解答] 二次不等式给出解集,既可以确定对应的二次函数图象开口方向(即a的符号)又可以确定对应的二次方程的两个根,由此可根据根与系数关系建立系数字母关系式,通过代入法求解不等式。

由ax2+bx+c>0的解集是-3

且-3,1是方程ax2+bx+c=0的两个根,∴-3+1=-

∴ b=2a, c=-3a,代入所求不等式-3ax2+3ax+6a

∵ a

∴-1

,即=2,-3×1=,即=-3,另法:∵ a

x2+(1+)x+6(-1)>0,将=-3,=2,代入得-3x2+3x+6>0,即x2-x-2

以下同上面解法。

在本题条件下,要求解每一个字母a,b,c的值是不正确的。由于满足条件的二次函数只要开口向下,与x轴交于点(-3,0)和(1,0)即可,而这样的二次函数有无穷多个,故a,b,c无唯一解。

例5.解关于x的不等式ax2-(a-8)x+1>0,其中a∈R。

[分析与解答] a的不同实数取值对不等式的次数有影响,当不等式为一元二次不等式时,a的取值还会影响二次函数图象的开口方向,以及和x轴的位置关系。因此求解中,必须对实数a的取值分类讨论。

当a=0时,不等式化为8x+1>0。不等式的解为{x|x>-,x∈R}。

当a≠0时,由Δ=(a-8)2-4a=a2-20a+64=(a-4)(a-16)。

(1)若016时,Δ>0,抛物线y=ax2-(a-8)x+1开口向上,方程ax2-(a-8)x+1=0两根为。

不等式的解为{x|x}。

(2)若4

(3)若a=4时,Δ=0,抛物线y=ax2-(a-8)x+1开口向上且与x轴相切,方程ax2-(a-8)x+1=0有重根x=-。不等式的解为{x|x≠-,x∈R}。

(4)若a=16时,Δ=0,抛物线y=ax2-(a-8)x+1开口向上且与x轴相切,方程ax2-(a-8)x+1=0的重根为x=。不等式的解为{x|x≠,x∈R。}。

(5)若a0,抛物线y=ax2-(a-8)x+1开口向下,此时方程ax2-(a-8)x+1=0的两根大小关系是

{x|

[本周参考练习]

1.关于x的不等式|ax+1|≤b的解是-

2.解不等式1

≤x≤,求a,b的值。

3.不等式ax2+bx+cβ,其中α0的解。4.不等式x2-ax-6a>0的解为xβ,且β-α≤5(α≠β),求实数a的取值范围。

[参考答案]: 1.解:由|ax+1|≤b, ∴-b≤ax+1≤b,∴-b-1≤ax≤b-1。当a>0时,≤x≤。

∴ , 不满足a>0,舍去。当a

当a=0时,不合题意,所以a=-2,b=2。

2.解由1

3.解:必有a

x+>0的解为xβ,∴α+β=-, α·β=。

将cx2-bx+a>0两边同除以a(a

x2-x+1

∵ αβ>0,∴ x2+()x+-,不等式解为-

4.解:由α≠β,∴ 方程x2-ax-6a=0有两不等根,且α,β是其两根(β>α)。

∴ β-α=,∴ a2+24a≤25,-25≤a

含绝对值不等式的解法习题课

第十一教时三、补充:例七、已知函数f (x), g (x)在 R上是增函数,求证:f [g (x)]在 R上也是增函数。例八、函数 f (x)在 [0, 上单调递减,求f(x2)的递减区间。例九、已知函数 f (x......

《含绝对值不等式的解法》教案

《含绝对值不等式的解法》教案本课件依据我校高三数学第一轮复习用书《步步高高考总复习—数学》及另选部分题目制作而成,全部内容都经过了课堂教学的检验,为教学过程的实录。......

含绝对值不等式的解法修改

aa≥0一.(1)绝对值定义|a|={ -aa 绝对值的定义是用分类讨论思想定义的,他可以用来去掉绝对值的符号。(2) 实数a的绝对值表示在数轴上所对应点A到原点的距离。(3).请试着归纳出1.解方......

含绝对值符号的不等式的解法与证明

[本周内容]含绝对值符号的不等式的解法与证明[重点难点]1.实数绝对值的定义:|a|= 这是去掉绝对值符号的依据,是解含绝对值符号的不等式的基础。2.最简单的含绝对值符号的不等式......

1.2.2含多个绝对值不等式的解法导学案

兰州新区永登县第五中学高二数学(文)导学案班级:小组名称:姓名:得分:导学案 §1.2.2含多个绝对值不等式的解法设计人:薛东梅审核人:梁国栋、赵珍学习目标:含多个绝对值不等式的解法......

《含绝对值的不等式解法(总结归纳).docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
含绝对值的不等式解法(总结归纳)
点击下载文档
相关专题 含绝对值的不等式总结 不等式 绝对值 解法 含绝对值的不等式总结 不等式 绝对值 解法
[其他工作总结]相关推荐
[其他工作总结]热门文章
下载全文