_直接证明综合法与分析法_证明分析法
_直接证明综合法与分析法由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“证明分析法”。
教学反思:通过本节的学习,学生积极参加课堂教学,顺利地完成了教学任务,达到了预期的教学目的。但由于学生的基础较差,知识遗忘严重,在一定程度上影响了教学进度,使课堂上进度比较紧张。所以在以后的教学过程中,要特别注意学生的实际水平,让学生提前预习,以保证课堂教学进度。
直接证明--综合法与分析法
1.教学目标:
知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和
综合法;了解分析法和综合法的思考过程、特点。
过程与方法: 多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析
问题和解决问题的能力;
情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
2.教学重点:了解分析法和综合法的思考过程、特点
3.教学难点:分析法和综合法的思考过程、特点
4.教具准备:与教材内容相关的资料。
5.教学设想:分析法和综合法的思考过程、特点.“变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。
6.教学过程:
学生探究过程:
合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的,数学中的两大基本证明方法-------直接证明与间接证明。
若要证明下列问题:
已知a,b>0,求证a(bc)b(ca)4abc
教师活动:给出以上问题,让学生思考应该如何证明,引导学生应用不等式证明。教师最后归结证明方法。
学生活动:充分讨论,思考,找出以上问题的证明方法
1.综合法
综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式用综合法证明不等式的逻辑关系是: 222
2PQ1(Q1Q2)Q2Q3.....QnQ
综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公例
1、在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列, a,b,c成等比数列,求证△ABC为等边三角形.教师——引导
学生——小组讨论
讨论:若题设中去掉x1这一限制条件,要求证的结论如何变换?
2.分析法
证明数学命题时,还经常从要证的结论 Q 出发,反推回去,寻求保证 Q 成立的条件,明尸 2 成立,再去寻求尸 2 成立的充分条件尸 3 件、定理、定义、公理等)为止.乞,再去寻求尸 1 成立的充分条件尸 2 ;为了证 „ „ 直到找到一个明显成立的条件(已知条即使 Q 成立的充分条件尸 1 .为了证明尸 1 成立,分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么用分析法证明不等式的逻辑关系是:
QP1(P1P2).....(Pn1Pn)PnP
分析法的思维特点是:分析法的书写格式:
要证明命题B为真,只需要证明命题B1为真,从而有„„
这只需要证明命题B2为真,从而又有„„
„„
这只需要证明命题A而已知A为真,故命题B例
3、求证372
学生——自主解决
例4 已知,k
2(kZ),且
sincos2sin①
sincossin2②1tan21tan2求证:。221tan2(1tan)
教师——引导
学生——小组合作交流
练习:课本89页1,2,3
课后作业:第84页1,2,3
板书设计
课题:直接证明--综合法与分析法1.教学目标:知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。过程与方法: 多......
直接证明与间接证明——综合法与分析法参考答案课堂合作探究1、A2、B3、A4、证明:(ab(ab)2a0,b0ab0,00基础训练1、C2、C3、D4、B5、C6、C 能力提升1、证法一:a,b,c,是不等的正......
直接证明—分析法与综合法的应用课型:习题课教学目标:知识与技能:结合教学实例,了解直接证明的两种基本方法之过程与方法:通过教学实例了解分析法的思考过程、特点;体会分析法和综......
2.2.1直接证明(综合法)一、复习准备:1.已知 “若a1,a2R,且a1a21,则2.已知a,b,cR,abc1,求证:114”,试请此结论推广猜想.a1a21119.abc先完成证明 → 讨论:证明过程有什么特点?二、讲授新......
2.2.1直接证明—综合法与分析法的应用班级:姓名:【学习目标】:(1)结合教学实例,了解直接证明的两种基本方法之一 (2)通过教学实例,了解综合法的思考过程、特点(3)体会数学证明的特点,感......
